BODENMECHANIK • GEOTECHNIK • GUTACHTEN

- Baugrunderkundung
- _ Altlastenerkundung
- _ Kontrollprüfungen
- Gründungsberatung
- _ Hydrogeologie
- Schadensanalysen

IngGeo Baugrund Ingenieurbüro • Dipl.-Ing. (FH) Danny Behm Arkonaplatz 6 • 10435 Berlin – Mitte Dipl.-Ing. (FH) Danny Behm • BERATENDER INGENIEUR

Zweigstelle Vorpommern

Maxim-Gorki-Str. 10

17321 Löcknitz

Berlin – Mitte Arkonaplatz 6 10435 Berlin

 Telefon
 (030) 66 66 85 - 63
 Telefon (039754) 522 801

 Fax
 (030) 66 66 85 - 64
 Fax
 (039754) 522 802

 Web
 www.lngGeo.net
 E-Mail
 Info@lngGeo.net

Geotechnischer Bericht

Baugrund- und Gründungsgutachten

Ort: Strausberg

Bauvorhaben: Errichtung von Wohnhäusern

"Am Annafließ" 15344 Strausberg

Bauherr: KW-Development GmbH

Salzbrunner Straße 5a

14193 Berlin

Umfang: 14 Textseiten + 5 Anlagen / 49 Seiten

(insgesamt 63 Seiten)

Berlin, 12.11.2018

Anlagenverzeichnis

Anlage 1: Lage- und Aufschlussplanskizze

Anlage 2.1 – 2.12: Bohr- und Sondierprofile Anlage 3: Korngrößenverteilung

Anlage 4: Prüfbericht Nr. CBE18-019423-1 der WESSLING GmbH

Anlage 5: Legende der Kurzzeichen

Unterlagenverzeichnis

U1: Auftrag 02.08.2018, Lageplanskizze

U2: Aktenvermerk über die Geländebegehungen und Schichtenverzeichnisse

der Aufschlüsse vom 18.09.2018 - 21.09.2018

U3: Geologisches Messtischblatt Nr. Blatt 3449 "Strausberg"

(M 1:25.000; Geologische Landesanstalt Berlin)

U4: Geologische Karte von Brandenburg

(M 1:25.000; Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg)

U5: Hydrogeologische Karte von Brandenburg

(M 1:50.000; Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg)

U6: Prüfbericht Nr. CBE18-019423-1 der WESSLING GmbH

1 Standort / Bauwerk / Vorgang

In Strausberg ist auf dem Grundstück "Am Annafließ" (Flurstück 608) die Errichtung von neuen Wohnhäusern (Stadtvillen) geplant. Die Gebäude sind als nicht unterkellerte Bebauungen vorgesehen. Die detaillierte Gründungsanordnung soll im Zuge der weiteren Planung festgelegt werden. Unser Büro wurde mit geotechnischen Untersuchungen und der Erstellung eines Baugrund- und Gründungsgutachtens beauftragt [U1].

Das betrachtete Untersuchungsgelände befindet sich auf einer Anhöhe gegenüber der angrenzenden Straße und ist stark mit Sträuchern, Büschen und Gräsern bewachsen. Von früheren Geländeüberformungen, ehemaligen Baumaßnahmen und Bodenumlagerungen ist augenscheinlich auszugehen. Die Geländehöhen steigen von der Straße i.M. bei ca. 66,5...67m NHN (Am Annafließ) bis etwa 72m NHN (Bereich östliche Grundstücksgrenze) an. Wohnhäuser befinden sich auf dem nördlichen und südlichen angrenzenden Grundstücken. Die Bahntrasse (Richtung Strausberg Nord) verläuft unmittelbar östlich des Grundstücks.

Das Bauvorhaben wird unter Berücksichtigung der geplanten Bauaufgabe und der angetroffenen örtlichen Verhältnisse gemäß DIN EN 1997 in die Geotechnische Kategorie 2 eingestuft. Grundlage für die Erstellung des Schichtenmodells bilden, neben der Auswertung von Archivunterlagen [U3/U4], die Aufschluss- und Erkundungsarbeiten, die unter Berücksichtigung der Aufgabenstellung, des Geländes und der regionalgeologischen Situation ausgeführt wurden.

Zur Baugrunderkundung wurden Kleinbohrungen (RKB / Ø 36mm ... Ø 60mm) ab geteuft. Bodenmechanische Laborprüfungen wurden an ausgewählten Bodenproben durchgeführt. Die Lage der Aufschlüsse ist der Anlage 1 zu entnehmen. Die Geländehöhen der Aufschlussansatzpunkte wurden entsprechend dem Lageplan [U1] eingeordnet.

Um Synergien im Zuge der Erkundungen zu nutzen, wurde darüber hinaus eine orientierende Bodenuntersuchung an punktuellen Bereichen des oberflächennahen Bodenhorizontes im Hinblick auf mögliche Bodenverunreinigungen und ggf. vorhandene Schadstoffbelastungen durchgeführt, die u.a. im Rahmen von künftigen Erdarbeiten und für die Entsorgung von Aushubmaterial von Bedeutung ist (orientierende LAGA-Beprobung).

Weitere – als die genannten – Unterlagen und Informationen lagen zum Zeitpunkt der Erstellung des Gutachtens dem Unterzeichner nicht vor.

2 Geologische Situation

Der betrachtete Standort liegt großräumig im Bereich des Strausberger Sanders, der von den Schmelzwassermassen von der Eisrandlage der Frankfurter Staffel der Weichseleiszeit überströmt wurde. Das mitgeführte Material, vorwiegend Sande und Kiese, hat sich über einem älteren, meist zusammenhängenden Geschiebemergelkomplex abgelagert.

Für das Untersuchungsgebiet sind Wechsellagerungen nichtbindiger und bindiger Sande verschiedener Körnung als auch Geschiebelehm / -mergel charakteristisch. Aufgrund der früheren Nutzung des Geländes ist von Auffüllungen in der oberen Boden- bzw. Baugrundzone auszugehen.

Konkrete Angaben über den lithologischen Aufbau des Untersuchungsstandortes für den erkundeten Tiefenbereich liefern die Ergebnisse der durchgeführten Aufschlüsse [U2].

3 Baugrunderkundung

3.1 Schichtenfolge

Durch die Erkundungsarbeiten wurden die zu erwartenden Baugrundverhältnisse bestätigt. Die ausgeführten Kleinbohrungen zeigen folgenden idealisierten Baugrundaufbau:

Auffüllung:

Zuoberst wurde eine Auffüllung [A] angetroffen, die im Zuge früherer Maßnahmen zur Umlagerung / Verfüllung gelangte. Die Auffüllung setzt sich aus umgelagerten Sanden aller Kornfraktionen, vereinzelten Kiesen und Steinen, örtlichen mehr bis minder schluffigen Nebenanteilen bzw. Lehmlagen und zuoberst schwach humosen Beimengungen zusammen und ist von Bauschuttresten durchsetzt. Die Fremdanteile sind sehr unterschiedlich ausgeprägt / verteilt. Es wurden u.a. lokal nur vereinzelte Beton- und Ziegelreste angetroffen und abschnittsweise wiederum gröbere Bauschutt-Zusammensetzungen bzw. Beton- und Ziegelbruch (Hindernisse) festgestellt.

Prinzipiell ist von unterschiedlicher Tiefe / Mächtigkeit der Auffüllung und größeren Geländeumformungen auszugehen. Die Auffüllung ließ sich insgesamt sehr schwer (!!) bohren, sodass die Aufschlüsse tlw. abgebrochen werden mussten.

Aufgrund der angetroffenen Fremdanteile sind verbliebene grobklastische Fremdelemente (u.a. kompakter Bauschutt, Beton- / Ziegelbruch) nicht auszuschließen. Prinzipiell ist aufgrund der Genese mit Wechsellagerungen in umgelagerten Bodenzonen zu rechnen.

Schmelzwassersande:

Anschließend wurden Schmelzwassersande [SE/SW/SU] erkundet, die sich bodenmechanisch aus Sanden aller Kornfraktionen mit örtlichen mehr bis minder schluffigen Nebenanteilen, Kiesen und Steinen zusammensetzen. Anhand der mittel bis überwiegend schweren Bohrbarkeit bzw. des Eindringwiderstandes der Bohrsonden kann für die gewachsenen Sande von einer gut mitteldichten bis dichten Lagerung (D >> 0,3) ausgegangen werden. Örtlich wurden die Sande mit einer entsprechenden dichten Lagerung erkundet, sodass kein weiterer Bohrfortschritt mehr möglich war.

Lokal Geschiebelehm / -mergel:

Die Sande werden lokal von steifen Geschiebelehm /- und mergel [SU*/ST*/TL] unterlagert, der sich ebenfalls mittel bis schwer bohren ließ.

3.2 Baugrundeigenschaften

Das während der Bohrarbeiten entnommene Bohrgut wurde visuell und manuell untersucht. Unter Berücksichtigung der Feldversuche erfolgte an ausgewählten Bodenproben die laborative Bestimmung der Korngrößenverteilung. Aufgrund dieser Untersuchungen sowie der Beobachtung bei der Durchführung der Bohrarbeiten erfolgt die nachstehende Einschätzung über die Eigenschaften des erkundeten Baugrundes, wobei regionale Erfahrungen genutzt werden. Relevante Schichten in Bezug auf Homogenbereiche bzw. demensprechende Bodenzonen werden dabei zusammengefasst.

Schicht: Auffüllung

Zusammensetzung: Sande aller Kornfraktionen, vereinzelte Kiese und Steine,

mehr bis minder schluffige Nebenanteile bzw. Lehmlagen,

zuoberst schwach humose Beimengungen,

örtliche Beton- und Ziegelreste, tlw. Beton- und Ziegelbruch

Kurzzeichen nach DIN 4023: A [fS – mS, fs, ms', gs, u' – u*, g' – g, x', h' +

o.g. Fremdanteile]

Bodengruppen nach DIN 18196: A

Durchlässigkeit: mittel – schwach (Erfahrungswerte)

Schicht: Schmelzwassersande

Zusammensetzung: Sande aller Kornfraktionen mit örtlichen mehr bis minder

schluffigen Nebenanteilen, Kiese und lokale Steine

Kurzzeichen nach DIN 4023: fS - mS, örtlich u' - u, g' - g, x'

Bodengruppen nach DIN 18196: SE / SU / SW

Durchlässigkeit: SE: $k \approx 6.0 \times 10^{-5} \dots 6.1 \times 10^{-5} \text{ m/s}$ (Laborwerte)

SU: $k \approx 6.1 * 10^{-6} \text{ m/s (Laborwert)}$

Lagerungsdichte: mitteldicht (D \geq 0,3)

Zusammendrückbarkeit: gering / bei mitteldichter Lagerung

Schicht: Geschiebelehm / -mergel

Zusammensetzung: Sand – Schluff – Ton – Gemisch,

örtliche Kiese eingeschaltet, eingelagerte Steine möglich

Kurzzeichen nach DIN 4023: Lg / Mg [U, $s - s^*$, $t^* - t$, g^*]

Bodengruppen nach DIN 18196: SU* / ST* / TL

Konsistenz: steif

Durchlässigkeit: gering, $k_f \approx 10^{-7} \dots 10^{-8}$ m/s (Erfahrungswerte)

Zusammendrückbarkeit: bei steifer Konsistenz → gering

Die detaillierten Ergebnisse der Aufschlüsse und bodenmechanischen Laboruntersuchungen sind in den Anlagen 2 und 3 dargestellt.

4 Grundwassersituation / Hydrogeologische Verhältnisse

Bei den Aufschluss- und Geländearbeiten wurde kein ergiebiges Grundwasser im untersuchten Teufenbereich angetroffen. Lokal wurde Schichtenwasser festgestellt. Prinzipiell ist es möglich, dass sich in regenreichen Witterungsperioden oder nach einem Starkregen, durch das sich ansammelnde Sickerwasser, Durchfeuchtungen und temporäre Wasserstände (Stau- und Schichtenwasser) oberund innerhalb von feinkörnigen bzw. schluffigen / bindigen Bodenzonen einstellen können.

Durch Sickerwasseransammlungen kann es prinzipiell zu Aufweichungen von bindigen Böden kommen. Das Stau- und Schichtenwasser ist von der Niederschlagsintensität, den Versickerungsmöglichkeiten und den Abflussverhältnissen abhängig. Im ungünstigen Fall ist bei bindigem Boden nach längeren Niederschlagsperioden oder einem Starkregen sowie in Abhängigkeit der Geländegegebenheiten ein temporärer Anstau an der Geländeoberfläche nicht auszuschließen.

Ein zu erwartender höchster Grundwasserstand (HGW) ist für das betrachtete Baugebiet aufgrund der hydrogeologischen / schichtenbedingten Situation (Hochlage) nicht anzugeben.

Schriftliche und statistisch gesicherte Angaben über den Hauptgrundwasserleiter des Gebietes, zu Extremwasserständen, Pegelmessungen und Ganglinien sind bei Bedarf bei der zuständigen Landesbehörde (LUGV) anzufordern.

5 Gründungstechnische Beratung

5.1 Baugrundeignung, Gründung und Erdbau

Die zuoberst erkundete sandig-humose und örtlich von gröberen Bauschuttanteilen durchsetzte Auffüllung ist als frostempfindlich und gering tragfähig zu bewerten. Diese Schichten sind prinzipiell mit der Gründung zu durchfahren bzw. gelangen im Gründungsbereich zum Aushub.

Verfüllter bzw. umgelagerter mineralisch zusammengesetzter Boden (i.W. "sauberer" aufgefüllter Sand mit nur vereinzelten Fremdbeimengungen) ist als bedingt tragfähig anzusehen – unter der Voraussetzung einer sorgfältigen Sohl-Aufbereitung und Beachtung nachfolgender Hinweise.

Die darunter anstehenden gewachsenen Sande [SE/SW/SU] und der Geschiebelehm / -mergel [SU*/ST*/TL] sind der Bauaufgabe entsprechend für einen Lastabtrag nutzbar und für eine konventionelle Flach- bzw. Flächengründung als gut tragfähig einzustufen.

Für die geplanten Gebäude kommt vorzugsweise die Gründung auf Boden- und Gründungsplatten, mit der daraus resultierenden günstigen Lastverteilung, als auch die traditionelle Gründung auf Einzel- und Streifenfundamente infrage. Die nach DIN 1054 geforderte frostsichere Gründungstiefe von mindestens d ≥ 0,80m unter GOK, besser 1,0m unter GOK, ist einzuhalten.

Humose-organische Anteile, Wurzeln und grobe Fremdanteile sind bei den Ausschachtarbeiten im Gründungsbereich aus dem Baugrund zu entfernen. Dementsprechende Schachtungen sind vorzusehen. Ungeeignete grobstückige oder kompressible Bestandteile sind prinzipiell auszugrenzen!

Vereinzelte Ziegelreste sind unbedenklich und innerhalb einer sandigen / mineralischen Zusammensetzung und als verdichtungs- und gründungsfähiger Boden anzusehen. Zielgerichtete Probeschürfungen vorab im Bereich der Gebäude sind empfehlenswert, um die tatsächliche Gesamt-Zusammensetzung der Auffüllungen diesbezüglich vorab festzustellen und grobe Bauschutt-Lagen und/oder ungeeignete Fremdelemente auszuschließen.

Entsprechend des Auf- und Abtrag des Geländes ist mit verdichtungsfähigem Bodenmaterial wieder anzugleichen und dabei sorgfältig lagenweise nachzuverdichten. Auflockerungen und Inhomogenitäten sind auszugrenzen. Als Baugrundersatz ist als Ausgleichs- / Polstermaterial ein kapillarbrechendes, gut abgestuftes und verdichtungsfähiges frostsicheres Material zu verwenden. Die Lagenstärke und Anzahl der Verdichtungsgänge richten sich nach der Wirkungstiefe des zum Einsatz kommenden Verdichtungsgerätes. Zur Bettung von Boden- und Gründungsplatten muss analog ein verdichtungsfähiges frostsicheres Schüttmaterial (möglichst Kiessand oder vergleichbares Recycling-Material) verwendet werden.

Wird auf konventionellen Einzel- bzw. Streifenfundamenten gegründet, ist es für die Zwischenbereiche (unter Fußbodenflächen im Bereich nicht lastabtragender Bauteile bzw. Tragelementen, die keine statische Funktion übernehmen) empfehlenswert, an der Oberfläche ein kapillarbrechendes Kiesbett vorzusehen und dieses sorgfältig zu verdichten.

In Bezug auf die Ausführung von Erdarbeiten ist entsprechend DIN 18300 die Gründungssohle vor der Überbauung vom Auftraggeber freizugeben.

Bei Nutzung von Auffüllungen ist nur einwandfrei mineralisch zusammengesetzter Boden (d.h. Sand ohne kompressible und ohne humose Beimengungen) bei nachweislicher Nachverdichtung auf mitteldichte Lagerung ($D \ge 0.3$) als gründungsfähiger Baugrund anzusehen.

Um evtl. verbliebene Schwächezonen im Untergrund kompensieren zu können (z.B. innerhalb der Auffüllung), ist ein Verdichtungsgrad von $D_{Pr.} \ge 98$ % anzustreben; mind. $D_{Pr.} \ge 97$ % sind einzuhalten. Eine tiefreichende mindestens mitteldichte Lagerung (D $\ge 0,3$) ist zu gewährleisten. Eine dementsprechende aufbereitete Gründungssohle entspricht aus bodenmechanischer Sicht dem tragfähigen Baugrund. Es sind geotechnische Kontrollprüfungen vorzusehen. Zur Überprüfung der Aushub- und Gründungssohle bzw. zur Baugrubenabnahme ist im Zuge der Erd- und Grundbauarbeiten der Baugrundsachverständige erneut einzuschalten.

Aufgefüllter Boden mit ungeeigneten sperrigen oder kompressiblen Fremdanteilen ist ohne vorherige sorgfältige Aufbereitung nicht zum Einbau geeignet. Nichtbindige – einwandfrei mineralische – Sande können wiederverwendet werden.

Das Neuverlegen von Leitungen kann generell in den Bodenarten unter Beachtung der spezifischen Anforderungen der zu verlegenden Leitungsarten sowie für evtl. Sicherungs- und Verbaumaßnahmen für die Leitungsgräben vorgenommen werden.

Für die erkundeten Bodenarten werden für das Gewerk Erdbau zur Orientierung die folgenden Eigenschaften für die maßgebenden Schichten zusammenfassend angegeben (Tabelle 1):

Tabelle 1: Einstufung der anstehenden Bodenarten

Bodenart	DIN 18196	Frostempfindlich- keitsklasse nach ZTVE-StB	Bodenklasse nach DIN 18300 (ALT) ¹⁾	Homogenbereich für Gewerk Erdbau nach DIN 18300 (NEU) ¹⁾
Auffüllung, geringe Fremdanteile	А	F1 – F2	3	A
Auffüllung mit Bauschutt kompakt	Α	F1 – F2	4	В
Sande	SE-SW/SU	F1 / F2	3	Α
Geschiebelehm / - mergel, steif	SU*/ST*/TL	F3	4	В

Bodenklasse 1: Oberboden Frostempfindlichkeitsklasse F1: nicht frostempfindlich

Bodenklasse 3: leicht lösbare Bodenarten Frostempfindlichkeitsklasse F2: gering bis mittel frostempfindlich

Bodenklasse 4: mittelschwer lösbare Bodenarten Frostempfindlichkeitsklasse F3: stark frostempfindlich

Anhand der Baugrunderkundung erfolgt prinzipiell eine <u>orientierende Zuordnung!</u>
Durch Umlagerungen im oberen Bodenhorizont und anhand der Erkundungsergebnisse sind örtlich verbliebene Fremdanteile (auch grobstückige Bauschutt-Anteile, Beton- und Ziegelbruch, Bauschutt kompakt) innerhalb von <u>Auffüllungen</u> zu berücksichtigen!

Legende Tabelle 1, Seite 8:

Zur Abgrenzung und besseren Übersicht werden in der Tabelle Bodenklassen (DIN 18300 ALT) angegeben und Homogenbereichen (DIN 18300 NEU) gegenübergestellt.

Nach neuer DIN 18300 sind anhand der Erkundungsergebnisse zusammenfassend die **obere Deckschicht / Auffüllung mit geringen Fremdbeimengungen** (gilt für nichtbindige bis bindige und organische Bodenarten sowie deren Gemische) und die gewachsenen **Sande** als ein <u>Homogenbereich A (leicht lösbar)</u> sowie die **Auffüllung mit Beton- und Ziegelbruch (kompakter Bauschutt!)** und der **steife Geschiebelehm / -mergel** als zweiter <u>Homogenbereich B (mittelschwer lösbar)</u> charakteristisch.

Lokal eingelagerte größere Kiese oder Steine können aufgrund der geologischen Entstehung innerhalb der Böden auftreten, sodass örtliche Behinderungen bei Grund- / Erdbauarbeiten nicht restlos auszuschließen sind!

Weitere bodenmechanische Angaben / Eigenschaften zu den Schichten sind in Abs. 3.2 und Tabelle 2 angegeben!

5.2 Empfohlene Bodenkennwerte

Nachfolgende Kennwerte für bodenmechanische Berechnungen werden auf der Basis korrelativer Beziehungen sowie regionaler Erfahrungswerte angegeben (Tabelle 2). Dabei handelt es sich um charakteristische Kennwerte für die maßgebenden Schichten.

Tabelle 2: Bodenmechanische Kennwerte

			Auffüllung 1)	Sande	Geschiebelehm / -mergel
			(sandig -	[SE-SW/SU] 2)	steif
			mineralisch)		[SU*/ST*/TL]
Wichte erdfeucht	γ	[kN/m³]	18	18 (19)	21
Wichte unter Auftrieb	γ'	[kN/m³]	10	10 (11)	11
Reibungswinkel	φ'	[°]	30	35 (33)	28 30
Kohäsion	C'	[kN/m²]	0	0 (2)	8 12
Steifemodul	Es	[MN/m²]	-	30 80 ³⁾	40 70 ³⁾

Die angegebenen Kennwerte (Erfahrungswerte analoger Lockergesteine) sind in Bezug auf erdstatische Berechnungen nur für temporäre Baugrubenausbildungen und ggf. Verbaumaßnahmen anzusetzen und gelten unter der Voraussetzung, dass die Auffüllung im betreffenden Bereich aus überwiegend mineralischen Bestandteilen besteht, d.h. die Kennwerte gelten nur für sandig – mineralische Auffüllungen / und gelten nicht für stark humose oder kompakt bauschuttdurchsetzte Auffüllungen / Bereiche!

Wenn für Schüttmaterial (grobkörnige Böden der Bodengruppen SW/SI/SE/GW/GI/GE nach DIN 18196) keine genauen Werte vorliegen, kann bei mitteldichter Lagerung (nachweislich verdichtet) erfahrungsgemäß von folgenden charakteristischen Bodenkennwerten ausgegangen werden: $\gamma = 18 \dots 20 \text{ kN/m}^3$, $\phi' = 33^\circ \dots 35^\circ$, c' = 0.

Aufgrund ähnlicher bodenmechanischer Eingenschaften werden die Sande zusammenfassend beschrieben. Klammerwerte gelten für bindige / schluffige Sande (SU).

³⁾ Tiefeneinfluss berücksichtigt!

5.3 Bettungsmodul und Sohlwiderstände

Als maßgebend für konventionelle Flach- und Flächengründungen sind die erkundeten gewachsenen nichtbindigen Sande [SE] einschließlich einer sorgfältig aufbereiteten Gründungssohle (verdichtete mineralische Auffüllung bzw. nichtbindiges Polster- / Ersatzmaterial) anzusehen. Die diesbezüglichen Bemessungswerte werden wie folgt angegeben:

Wird für die Berechnung von Gründungsplatten das Bettungsmodulverfahren angewendet, so kann unter Auswertung der Fachliteratur ein Wert von $k_s = 15 \dots 20 \text{ MN/m}^3$ zugrunde gelegt werden.

Erfolgt die Bemessung einfacher Fundamente nach der Methode des Bemessungswertes des Sohlwiderstandes ($\sigma_{R,d}$), so kommen in Abhängigkeit von der Fundamentgeometrie und der Einbindetiefe die Werte für $\sigma_{R,d}$ gemäß der DIN 1054:2010-12 (auszugsweise in Tabelle 3 angegeben) infrage.

Tabelle 3: Bemessungswerte des Sohlwiderstandes nach DIN 1054:2010-12

kleinste Einbindetie- fe des Fundamentes t [m]	für	Bemessungswerte σ _{R,d} [kN/m²] des Sohlwiderstandes ¹) für Streifenfundamente auf nichtbindigem Boden (SE/SW – Sande) bzw. Polster- / Ersatzmaterial (SE/SW/GE/GW) mit Fundamentbreiten b bzw. b' von:					
	0,5 m 1,0 m 1,5 m 2,0 m						
0,5	280	420	560	700			
1,0	380	520	660	800			
1,5	480	620	760	900			

ACHTUNG — Die angegebenen Werte sind Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke nach DIN 1054:2005-01 und keine zulässigen Bodenpressungen nach DIN 1054:1976-11. Die Tabellenwerte gelten auf der Grundlage einer ausreichenden Grundbruchsicherheit mit der Voraussetzung einer mitteldichten Lagerung. Die Tabellenwerte gelten für den lotrecht mittigen Lastangriff ohne Grundwassereinfluss! Zwischenwerte dürfen geradlinig interpoliert werden.

Eine sorgfältig aufbereitete Gründungssohle (vgl. Empfehlungen in Abs. 5.1) ist für die Anwendung der vorgenannten Bemessungswerte Grundvoraussetzung!

5.4 Wasserhaltung

Wasserhaltungen sind anhand der Erkundungsergebnisse für die geplanten Gebäude (ohne Unterkellerung) nicht einzuplanen.

Sollte sich bei den Gründungsarbeiten ein temporärer Anstau von Schichtenwasser an einer feinkörnigen / bindigen Aushubsohle bilden, ist dieser erfahrungsgemäß mittels offener Wasserhaltung zu bewältigen.

Die Aushub- und Gründungsarbeiten sollten möglichst in einer Trockenperiode durchgeführt werden.

5.5 Versickerung

Die nichtbindigen Sande [SE/SW] sind als durchlässig zu bewerten. Bindige Sande [SU] sind als mäßig bis örtlich schwach durchlässig zu bewerten. Der Geschiebelehm / -mergel [SU*/ST*/TL] ist als gering durchlässig einzuschätzen.

Anhand der Korngrößenverteilung von entnommenen Bodenproben lässt sich der Durchlässigkeitsbeiwert k_f [m/s] nach BEYER eingrenzen. Danach lassen sich die anstehenden Böden in den angegebenen Grenzen der Durchlässigkeit entsprechend Abs. 3.2 sowie der Anlage 3 einschätzen.

Anfallendes Niederschlagswasser darf nicht unmittelbar im Bereich von Bauwerken eingeleitet werden. Prinzipiell sollte gewährleistet werden, dass die Versickerung in einem möglichst großem Abstand von Bauwerken in geeigneten Randbereichen und vorzugsweise innerhalb von gewachsenen durchlässigen nichtbindigen Sanden erfolgt.

Bzgl. der Möglichkeiten zur Versickerung, der Auswahl und der Dimensionierung von Versickerungsanlagen sowie einzuhaltender Sicherheitsanforderungen (u.a. Abstände von Gebäuden und Grenzen) ist die DWA Richtlinie DWA-A 138 zu beachten.

5.6 Bauwerksabdichtung

Aufgrund des tlw. erkundeten oberflächennahen bindigen Bodens (bindige / schluffige Sande, tlw. Lehmlagen / verfüllter Lehm) sind oberflächennahe Stauvernässungen und Schichtenwasser in längeren Niederschlagsperioden oder nach einem Starkregen möglich.

Der Belastungsfall gegen aufstauendes Wasser ist diesbezüglich maßgebend! Für die erdberührten Bauteile sind Bauwerksabdichtungen gegen Stauwasser gemäß DIN 18533-1 Wassereinwirkungsklasse W2.1-E bzw. Abschnitt 8.6.1 zu empfehlen. Ebenfalls ist für erdberührte Wände und Bodenplatten eine Bauwerksabdichtung gemäß DIN 18533-1 Wassereinwirkungsklasse W1.2-E bzw. Abschnitt 8.5.1 möglich, wenn Stauwasser durch eine Dränung nach DIN 4095 – deren Funktionsfähigkeit auf Dauer sichergestellt ist – verhindert wird.

Eine Abdichtung der erdberührten Bauteile gegen Bodenfeuchte und nichtdrückendes Wasser gemäß DIN 18533-1 Wassereinwirkungsklasse W1.1-E bzw. Abschnitt 8.5.1 ist dann zulässig, wenn die unterste Abdichtungsebene auf stark durchlässigen Baugrund mit ausreichender Tiefe zum liegen kommt (stark durchlässiges Ersatzmaterial mit $k_f > 10^{-4}$ m/s) und Stauwasserbildungen sicher vermieden werden (Ausführungen in DIN 18533-1 beachten!).

Prinzipiell wird empfohlen, die Geländeprofilierung – in Bezug auf die neuen Bauwerke – so zu gestalten, das anfallendes Wasser (durch Niederschläge etc.) den Gebäuden nicht zufließen kann bzw. dementsprechend geeignete Maßnahmen zur Entwässerung vorgesehen werden.

6 Orientierende Bodenuntersuchung in Bezug auf die Entsorgung von Aushubmaterial

6.1 Durchführung der orientierenden Bodenuntersuchungen

Die Probenahme erfolgte aus dem Auffüllungshorizont. Das Material der punktuell untersuchten Auffüllung wies neben örtlichen Fremdbeimengungen (u.a. Beton- und Ziegelreste) die materialtypische Färbung (überwiegend graubraun) auf.

Die gewonnenen Proben aus Bodenmaterial des Auffüllungshorizontes (Probenahme mittels Kleinbohrungen) wurden an das akkreditierte Prüflaboratorien WESSLING GmbH übergeben und gelangten zur labortechnischen Untersuchung.

Da das Probenmaterial einen überwiegenden Anteil an Boden enthielt, erfolgte die Untersuchung der Proben nach der TR LAGA 20 Boden (Mindestuntersuchungsprogramm – LAGA Mitteilungen der Länderarbeitsgemeinschaft Abfall, Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen).

Nach der analytischen Untersuchung des Materials wurden die Analysenergebnisse in den Prüfberichten aufgelistet (vgl. Anlage 4).

Zusammenfassend stellt sich das Ergebnis der analytischen Untersuchung bezogen auf die zur Einstufung nach TR LAGA 20 Boden bestimmenden Parameter entsprechend der gewählten Teilbereichen wie folgt dar:

Tabelle 4: Übersicht bestimmende Parameter und Einstufung nach TR LAGA 20 Boden

Probe (Entnahme, Bodenhorizont / Teilbereich)	Für die Einstufung –	Einstufung /
	Bestimmende Parameter *)	Zuordnungswert
MP 1 (Probenmaterial aus der RKB 1	Benzo(a)pyren,	Z 1
oberer Bodenhorizont, Auffüllungshorizont)	(FS)	Z 1
MP 2 (Probenmaterial aus der RKB 2		
oberer Bodenhorizont, Auffüllungshorizont)	_	Z 0
MP 3 (Probenmaterial aus der RKB 3		7.4.0
oberer Bodenhorizont, Auffüllungshorizont)	pH-Wert (E)	Z 1.2
MP 4 (Probenmaterial aus der RKB 4		7.0
oberer Bodenhorizont, Auffüllungshorizont)	_	Z 0
MP 5 (Probenmaterial aus der RKB 5		Z 0
oberer Bodenhorizont, Auffüllungshorizont)	_	20
MP 6 (Probenmaterial aus der RKB 6	DAK (FO)	7.0
oberer Bodenhorizont, Auffüllungshorizont)	PAK ₁₆ (FS)	Z 2
MP 7 (Probenmaterial aus der RKB 7		Z 0
oberer Bodenhorizont, Auffüllungshorizont)	_	20
MP 8 (Probenmaterial aus der RKB 8	TOC (FS)	Z 1
oberer Bodenhorizont, Auffüllungshorizont)	TOC (FS)	۷ ۱
MP 9 (Probenmaterial aus der RKB 9		Z 0
oberer Bodenhorizont, Auffüllungshorizont)	_	20
MP 10 (Probenmaterial aus der RKB 10		Z 0
oberer Bodenhorizont, Auffüllungshorizont)	_	20
MP 11 (Probenmaterial aus der RKB 11	TOC (ES)	Z 1
oberer Bodenhorizont, Auffüllungshorizont)	TOC (FS)	<u> </u>
MP 12 (Probenmaterial aus der RKB 12		Z 0
oberer Bodenhorizont, Auffüllungshorizont)		20

^{*) (}FS) = Feststoff / (E) = Eluat

6.2 Bewertung der Ergebnisse der orientierenden Bodenuntersuchungen

⇒ Bewertung der Untersuchungsergebnisse auf Grundlage der TR LAGA 20 Boden:

Für die Proben wurden – bezogen auf die bestimmenden Parameter – die Zuordnungsklassen:

 $1 \times Z2$, $3 \times Z1$, $1 \times Z1.2$ und $7 \times Z0$ ermittelt.

Maßgebend für die Einstufung in die Zuordnungsklassen waren einzelne Analysenwerte u.a. von PAK₁₆, Benzo(a)pyren und TOC (jeweils im Feststoff) und des pH-Wertes (im Eluat).

Die Ergebnisse sind als Folge der anthropogenen Beeinflussung / Vornutzungen zu sehen. D.h.:

⇒ Zusammenfassend lässt sich zunächst ableiten, das die Untersuchungsergebnisse u.a. im Zusammenhang mit früheren Bodenumlagerungen und den bei der Erkundung angetroffenen Auffüllungs- bzw. Fremdanteilen (u.a. Beton- und Ziegelreste etc.) zu interpretieren sind, was erfahrungsgemäß auch üblichen Verhältnissen von anthropogenen Auffüllungen / Verfüllungen entspricht.

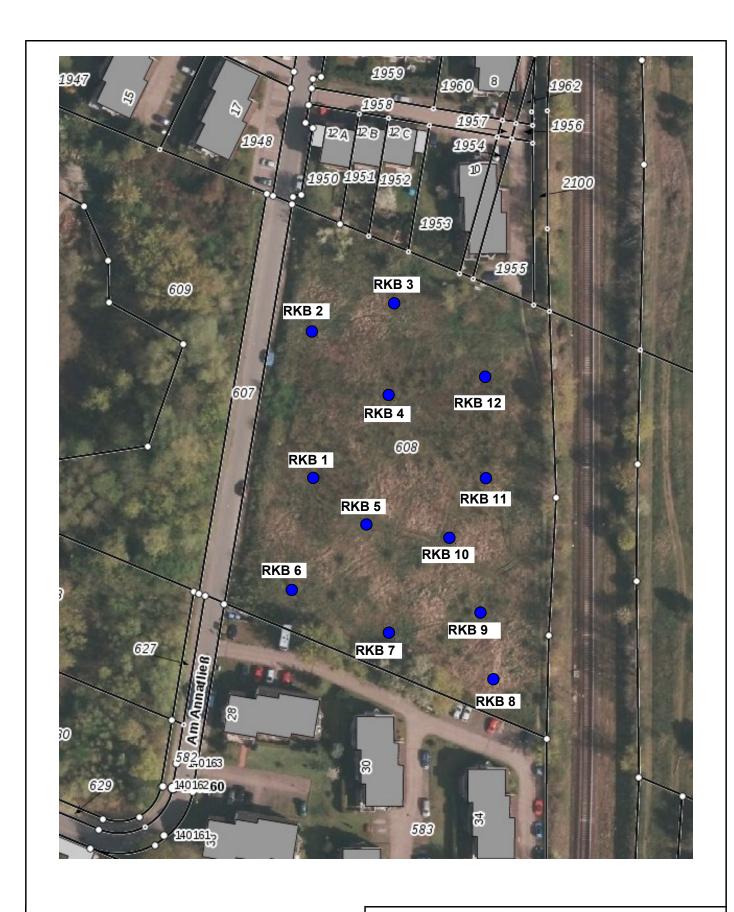
Geringfügig erhöhte Analysenwerte der Parameter PAK₁₆ und Benzo(a)pyren im Feststoff weisen i.d.R. darauf hin, dass diese Proben möglicherweise Beimengungen von teergebundenem Material enthalten, der in Auffüllungen häufig anzutreffen ist (wird z.B. auch durch vereinzelte Partikel / Rückstände von Dichtungsbahnen, Teerpappe etc. hervorgerufen – in Abhängigkeit der früheren tatsächlichen Nutzung).

Der Parameter TOC (Total Organic Carbon, organischer Kohlenstoff) resultiert aus dem in den untersuchten Proben enthaltenen Anteil an Humus (charakteristisch bei Oberbodenschichten, Mutterboden) im Feststoff (FS); schädliche Auswirkungen auf die Umwelt bzw. ein negativer Einfluss auf das Grundwasser können hierbei ausgeschlossen werden.

⇒ Prinzipiell entsprechen die aus den abgeteuften Kleinbohrungen entnommenen Proben / Mischproben und darauf basierenden abfallrechtlichen Einstufungen gemäß TR LAGA einer orientierenden Bodenuntersuchung und sind nicht verbindlich. Die Z-Klassen-Zuordnung stellt grundsätzlich auch kein Kriterium zur Ableitung von Maßnahmen dar, sondern kann lediglich einer eingeschränkten ersten Einschätzung dienen (ff.).

⇒ Orientierende Handlungsempfehlung:

Im Zuge von späteren Erdbauarbeiten / Eingriffen ins Erdreich / sollten anfallende Aushubmaterialien evtl. unterschiedlicher Zuordnungsklassen getrennt erfasst werden und möglichst als Haufwerke zur Beprobung bereitgestellt werden. Eine endgültige Einstufung nach LAGA erfolgt dann auf Grundlage der Analysenergebnisse entsprechender Haufwerksuntersuchungen mit abfallcharakterisierender Bewertung in Bezug auf die Gesamtmatrix und Einstufung / Vorschlag des Abfallschlüssels nach AVV.



7 Sonstige Hinweise

Durch die ausgeführten Kleinbohrungen wurde der Baugrund in Bezug auf seine Tragfähigkeit punktuell für die Errichtung der geplanten Wohnhäuser (ohne Unterkellerung) erkundet. Abweichungen zwischen den Aufschlüssen können aufgrund der geologischen Entstehung des Gebietes und früherer – auf dem Grundstück erfolgter – Maßnahmen nicht ausgeschlossen werden. Während der Erdbauarbeiten sollte eine Überprüfung, der durch punktuelle Aufschlüsse gewonnenen Angaben, erfolgen.

Die Überprüfung der Aushub- und Gründungssohle wird ausdrücklich In SITU empfohlen (Probeschürfungen VORAB / Geotechnische Kontrollprüfungen, insbesondere in Bezug auf die Auffüllung / Verfüllung!!). Für weiterführende bodenmechanische Betrachtungen steht unser Büro zur Verfügung.

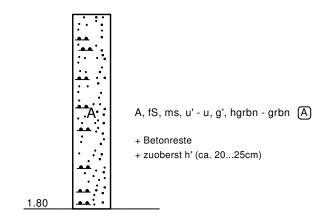
Die getroffenen umweltgeotechnischen Aussagen beziehen sich ausschließlich als Erstbewertung auf den untersuchten Teufenbereich; die untersuchten Parameter der Proben beschreiben den Zustand des Geländes zum Zeitpunkt der Untersuchungen. Die vorgenommenen orientierenden Bodenuntersuchungen beruhen auf einer sog. punktuellen Beprobung, u.a. anhand von Proben aus Rammkern-Sondierbohrungen (Kleinbohrungen). Lokale Bereiche mit evtl. Schadstoffbelastungen lassen sich grundsätzlich nicht restlos ausschließen, da diese auch mit anderen Methoden oder engerem Erkundungsraster nicht zwingend erfasst werden können und da eine punktuelle Probenahme naturgemäß Lücken aufweist. Die umweltgeotechnischen Bewertungen haben daher grundsätzlich einen orientierenden Charakter in Bezug auf die Qualität des Bodens.

RKB = Kleinbohrung

www.**IngGeo**.net Baugrund Ingenieurbüro

Dipl.-Ing. (FH) D. Behm Beratender Ingenieur Arkonaplatz 6 10435 Berlin

Baugrunderkundung - Baugrundgutachten Strausberg, Am Annaflließ


Lage- und Aufschlußplanskizze

Unmaßstäblich (Zoom Vorlage)

Datum: 04.10.2018

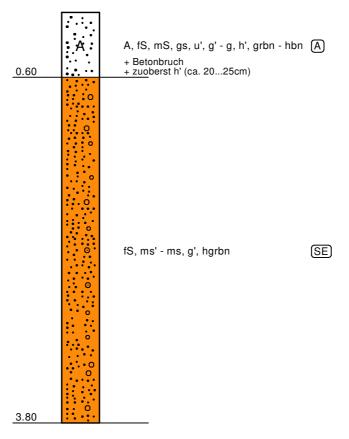
Anlage 1

GOK / ca. 68,3m NHN

Abbruch / Hindernis / kein Bohrfortschritt

www. IngGeo.net
Baugrund Ingenieurbüro

Dipl.-Ing. (FH) D. Behm Arkonaplatz 6 Beratender Ingenieur


10435 Berlin

Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil

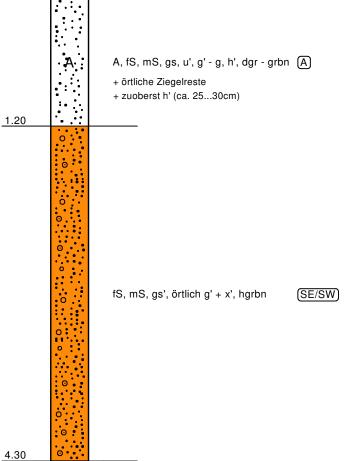
Datum: 07.11.2018

RKB 2

GOK / ca. 68,9m NHN

Abbruch / Hindernis, kein Bohrfortschritt, sehr schwer bohrbar

www. IngGeo.net
Baugrund Ingenieurbüro


Dipl.-Ing. (FH) D. Behm Arkonaplatz 6 Beratender Ingenieur

10435 Berlin

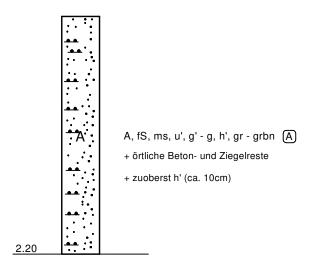
Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil

Datum: 07.11.2018

RKB 3 GOK / ca. 71m NHN

Abbruch / Hindernis, kein Bohrfortschritt, sehr schwer bohrbar

www. IngGeo.net
Baugrund Ingenieurbüro


Dipl.-Ing. (FH) D. Behm Arkonaplatz 6 Beratender Ingenieur

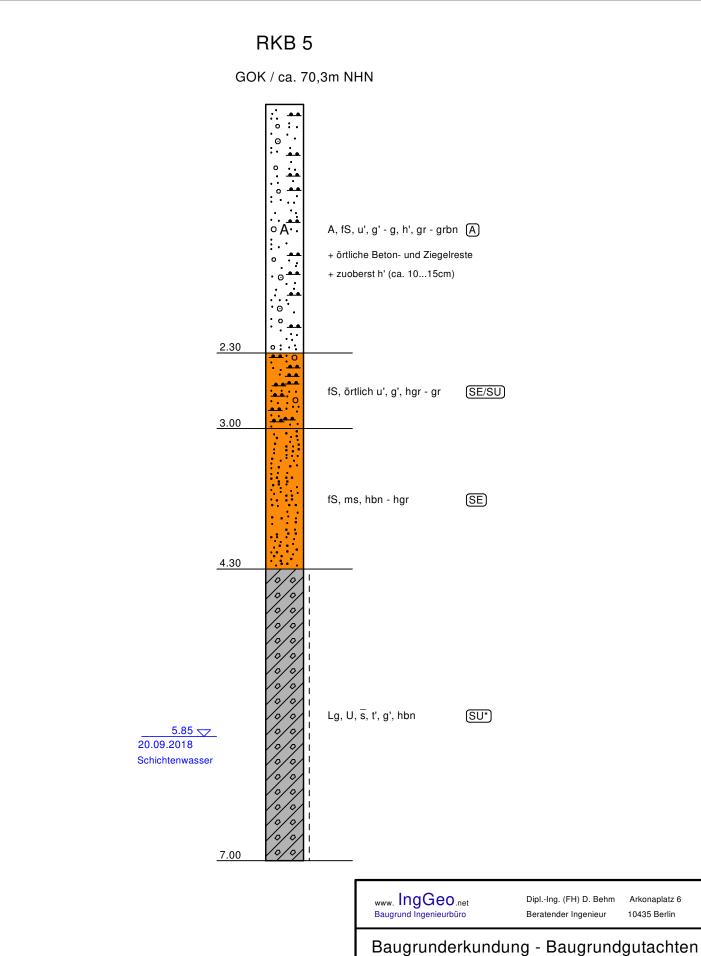
10435 Berlin

Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil

Datum: 07.11.2018

GOK / ca. 70,4m NHN

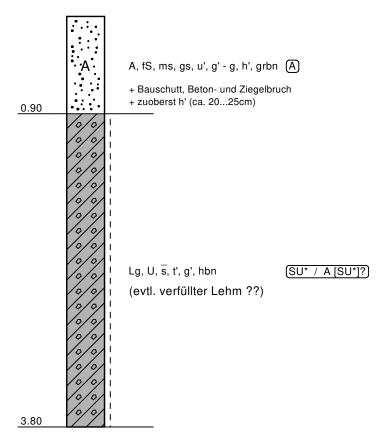
Abbruch / Hindernis, kein Bohrfortschritt, sehr schwer bohrbar


www. IngGeo.net
Baugrund Ingenieurbüro

Dipl.-Ing. (FH) D. Behm Arkonaplatz 6 Beratender Ingenieur

10435 Berlin

Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil


Datum: 07.11.2018

Baugrunderkundung - Baugrundgutachten
Strausberg, Am Annafließ
Bohr- und Sondierprofil

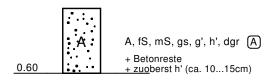
Datum: 07.11.2018 Anlage 2.5

GOK / ca. 69,9m NHN

Abbruch / Hindernis / kein Bohrfortschritt


www. IngGeo.net
Baugrund Ingenieurbüro

Dipl.-Ing. (FH) D. Behm Arkonaplatz 6 Beratender Ingenieur


10435 Berlin

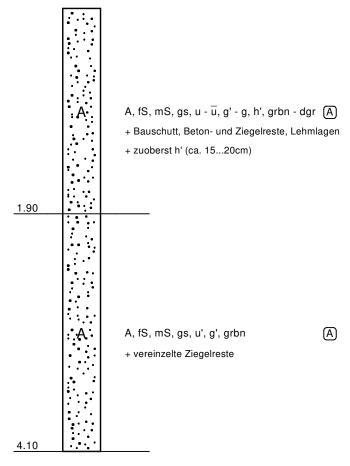
Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil

Datum: 07.11.2018

GOK / ca. 72m NHN

3 x Abbruch / Hindernisse / kein Bohrfortschritt

www. IngGeo.net
Baugrund Ingenieurbüro


Dipl.-Ing. (FH) D. Behm Arkonaplatz 6 Beratender Ingenieur

10435 Berlin

Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil

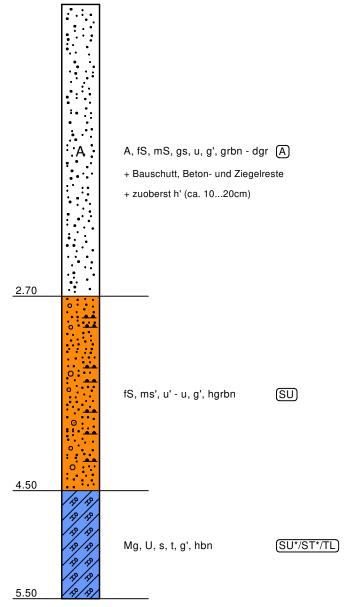
Datum: 07.11.2018

GOK / ca. 71,9m NHN

Abbruch / kein Bohrfortschritt / sehr schwer bohrbar

www. IngGeo.net
Baugrund Ingenieurbüro

Dipl.-Ing. (FH) D. Behm Beratender Ingenieur


Arkonaplatz 6 10435 Berlin

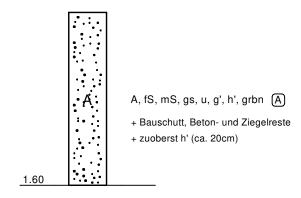
Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil

Datum: 07.11.2018

GOK / ca. 71,6m NHN

kein Bohrfortschritt / sehr schwer bohrbar

www. IngGeo.net
Baugrund Ingenieurbüro


Dipl.-Ing. (FH) D. Behm Arkonaplatz 6 Beratender Ingenieur

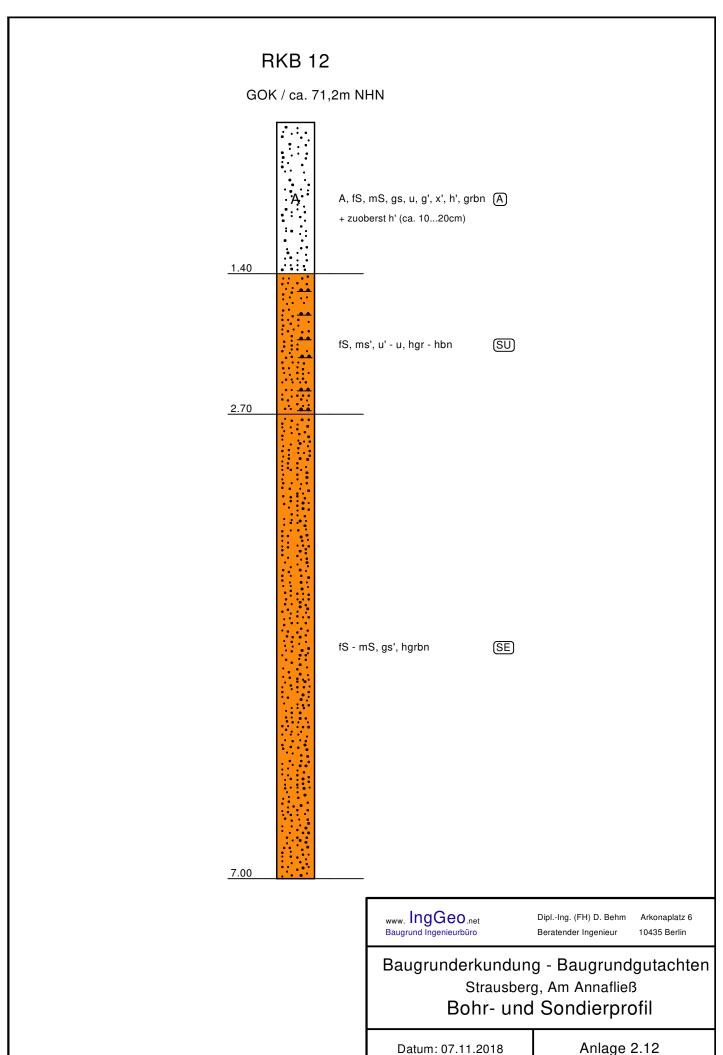
10435 Berlin

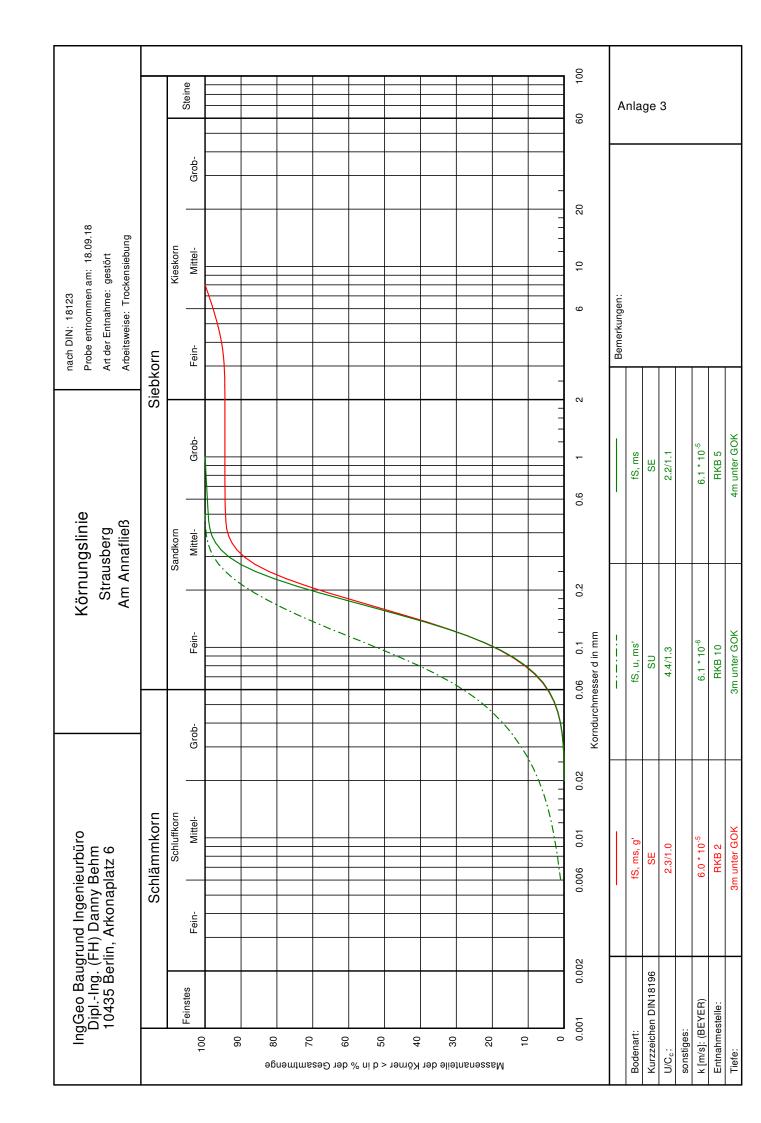
Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil

Datum: 07.11.2018

GOK / ca. 71,4m NHN

Abbruch / Hindernis / kein Bohrfortschritt


www. IngGeo.net
Baugrund Ingenieurbüro


Dipl.-Ing. (FH) D. Behm Arkonaplatz 6 Beratender Ingenieur

10435 Berlin

Baugrunderkundung - Baugrundgutachten Strausberg, Am Annafließ Bohr- und Sondierprofil

Datum: 07.11.2018

Anlage 4

Analytikergebnisse von insgesamt 12 Bodenmischproben

Prüfberichtsnr.

CBE18-019423-1

der WESSLING GmbH

WESSLING GmbH, Haynauer Str. 60, 12249 Berlin

INGGEO Baugrundbüro Herr Dipl.-Ing. Danny Behm Arkonaplatz 6 10435 Berlin Prüfberichtsnr.: CBE18-019423-1
Auftragsnr.: CBE-07689-18
Ansprechpartner: T. Rehausen
Durchwahl: +49 30 77 507 441
eMail: Till.Rehausen@w
essling.de

Datum: 10.10.2018

Untersuchungsergebnisse

BV: 15344 Strausberg, Am Annafließ

Till Rehausen Projektleiter

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-01 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 1

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	2,9	10	45	150	15 ^{⁴)}	Z 0
Blei	mg/kg TS	12	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,18	0,4	3	10	1 ⁵⁾	Z 0
Chrom (gesamt)	mg/kg TS	8,4	30	180	600	120	Z 0
Kupfer	mg/kg TS	7,2	20	120	400	80	Z 0
Nickel	mg/kg TS	6,4	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	42	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,12	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{40})$	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	2,17	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	0,32	0,3	0,9	3	0,6	Z 1

¹⁾ bei Uberschreitung ist die Ursache zu prüfen

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		8,1	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	47,6	250	250	1500	2000	Z 0
Chlorid	mg/l	4	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	5,9	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	<2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

⁷⁾ bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

^{*} Verfüllung von Abgrabungen

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

³⁾ bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%

⁴⁾ Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.

⁵⁾ Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.

⁶⁾ Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-02 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 2

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z 1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	2,1	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	3,3	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,12	0,4	3	10	1°)	Z 0
Chrom (gesamt)	mg/kg TS	6,2	30	180	600	120	Z 0
Kupfer	mg/kg TS	4,5	20	120	400	80	Z 0
Nickel	mg/kg TS	5,7	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	18	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,071	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	<3	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	<0,06	0,3	0,9	3	0,6	Z 0

¹⁾ bei Uberschreitung ist die Ursache zu prüfen

- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		7,8	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	35,6	250	250	1500	2000	Z 0
Chlorid	mg/l	3,3	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	3,4	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	<2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

^{*} Verfüllung von Abgrabungen

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

³⁾ bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-03 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 3

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z 1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	4,2	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	22	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,42	0,4	3	10	1°)	Z 1
Chrom (gesamt)	mg/kg TS	13	30	180	600	120	Z 0
Kupfer	mg/kg TS	12	20	120	400	80	Z 0
Nickel	mg/kg TS	11	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	0,04	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	380	60	450	1500	300	Z 1
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,43	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₂₂)	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	0,476	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	0,07	0,3	0,9	3	0,6	Z 0

¹⁾ bei Uberschreitung ist die Ursache zu prüfen

- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		10,6	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 1.2
Leitfähigkeit	μS/cm	152	250	250	1500	2000	Z 0
Chlorid	mg/l	8	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	10	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	9	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

^{*} Verfüllung von Abgrabungen

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

³⁾ bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-04 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 4

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z 1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	2,6	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	10	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,16	0,4	3	10	1°)	Z 0
Chrom (gesamt)	mg/kg TS	6,5	30	180	600	120	Z 0
Kupfer	mg/kg TS	14	20	120	400	80	Z 0
Nickel	mg/kg TS	5,5	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	33	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,25	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	1,14	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	0,1	0,3	0,9	3	0,6	Z 0

¹⁾ bei Uberschreitung ist die Ursache zu prüfen

- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		8,4	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	73,1	250	250	1500	2000	Z 0
Chlorid	mg/l	6,3	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	7,4	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	<2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

^{*} Verfüllung von Abgrabungen

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

³⁾ bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-05 **Probenart**: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 5

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter		Analysenwert	Z 0	Z 1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	3,4	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	12	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,2	0,4	3	10	1°)	Z 0
Chrom (gesamt)	mg/kg TS	9,9	30	180	600	120	Z 0
Kupfer	mg/kg TS	12	20	120	400	80	Z 0
Nickel	mg/kg TS	7,6	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	0,04	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	29	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,23	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	0,289	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	<0,06	0,3	0,9	3	0,6	Z 0

¹⁾ bei Uberschreitung ist die Ursache zu prüfen

- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		8,1	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	65,9	250	250	1500	2000	Z 0
Chlorid	mg/l	4,2	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	6,7	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

^{*} Verfüllung von Abgrabungen

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

³⁾ bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-06 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 6

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z 1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	6,5	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	11	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,24	0,4	3	10	1°)	Z 0
Chrom (gesamt)	mg/kg TS	17	30	180	600	120	Z 0
Kupfer	mg/kg TS	13	20	120	400	80	Z 0
Nickel	mg/kg TS	12	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	46	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,15	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{40})$	mg/kg TS	50	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	8,93	3	3(9) ²⁾	30	3	Z 2
Benzo(a)pyren	mg/kg TS	0,74	0,3	0,9	3	0,6	Z 1

¹⁾ bei Uberschreitung ist die Ursache zu prüfen

- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		10,4	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 1.2
Leitfähigkeit	μS/cm	132	250	250	1500	2000	Z 0
Chlorid	mg/l	5,6	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	7,9	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	4	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

Berlin, den

n.b. nicht bestimmbar

10.10.2018

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

^{*} Verfüllung von Abgrabungen

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

³⁾ bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-07 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 7

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter		Analysenwert	Z 0	Z1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	3,1	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	14	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,31	0,4	3	10	1°)	Z 0
Chrom (gesamt)	mg/kg TS	13	30	180	600	120	Z 0
Kupfer	mg/kg TS	13	20	120	400	80	Z 0
Nickel	mg/kg TS	15	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	40	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,21	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	0,539	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	0,08	0,3	0,9	3	0,6	Z 0

¹⁾ bei Uberschreitung ist die Ursache zu prüfen

- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		8,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	61,2	250	250	1500	2000	Z 0
Chlorid	mg/l	5,7	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	8,1	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	<2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

⁷⁾ bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

Berlin, den

n.b. nicht bestimmbar

10.10.2018

8) bei natürlichen Böden in Ausnahmefällen bis 120 µg/l

n.a. nicht analysiert

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

^{*} Verfüllung von Abgrabungen

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

³⁾ bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-08 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 8

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z 1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	2,8	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	17	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,23	0,4	3	10	1°)	Z 0
Chrom (gesamt)	mg/kg TS	15	30	180	600	120	Z 0
Kupfer	mg/kg TS	12	20	120	400	80	Z 0
Nickel	mg/kg TS	13	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	0,07	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	48	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,59	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 1
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	2,26	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	0,23	0,3	0,9	3	0,6	Z 0

¹⁾ bei Überschreitung ist die Ursache zu prüfen

- 3) bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%
- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		8,4	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	67,4	250	250	1500	2000	Z 0
Chlorid	mg/l	3,4	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	7,1	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

Verfüllung von Abgrabungen

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-09 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 9

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z 1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	2,3	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	8,7	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,13	0,4	3	10	1°)	Z 0
Chrom (gesamt)	mg/kg TS	7,7	30	180	600	120	Z 0
Kupfer	mg/kg TS	7,4	20	120	400	80	Z 0
Nickel	mg/kg TS	5,5	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	21	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,19	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	1,57	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	0,12	0,3	0,9	3	0,6	Z 0

¹⁾ bei Überschreitung ist die Ursache zu prüfen

- 3) bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%
- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		8	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	77,3	250	250	1500	2000	Z 0
Chlorid	mg/l	6,2	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	8,4	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	<2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

Verfüllung von Abgrabungen

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-10 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 10

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	2,6	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	9,9	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,17	0,4	3	10	1 ⁵⁾	Z 0
Chrom (gesamt)	mg/kg TS	7,7	30	180	600	120	Z 0
Kupfer	mg/kg TS	7,2	20	120	400	80	Z 0
Nickel	mg/kg TS	6,3	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	26	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	•	-
TOC	Masse%	0,2	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 1)	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{40})$	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	0,176	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	<0.06	0,3	0.9	3	0,6	Z 0

bei Uberschreitung ist die Ursache zu prüfer

- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		7,8	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	98,6	250	250	1500	2000	Z 0
Chlorid	mg/l	7,6	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	12	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	<2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

⁷⁾ bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

8) bei natürlichen Böden in Ausnahmefällen bis 120 μg/l

n.a. nicht analysiert

Berlin, den 10.10.2018

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

^{*} Verfüllung von Abgrabungen

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

³⁾ bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-11 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 11

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter	Dimension	Analysenwert	Z 0	Z 1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	3,3	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	15	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,21	0,4	3	10	1 ⁵⁾	Z 0
Chrom (gesamt)	mg/kg TS	16	30	180	600	120	Z 0
Kupfer	mg/kg TS	12	20	120	400	80	Z 0
Nickel	mg/kg TS	11	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	33	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,65	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 1
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	0,926	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	0,1	0,3	0,9	3	0,6	Z 0

¹⁾ bei Überschreitung ist die Ursache zu prüfen

- 3) bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%
- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.
- 6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		7,7	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	56,2	250	250	1500	2000	Z 0
Chlorid	mg/l	3,7	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	6,2	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	4	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

Verfüllung von Abgrabungen

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen
- Technische Regeln - (LAGA TR Boden vom 05.11.2004)

Proben-Nr.: 18-156262-12 Probenart: Boden

Auftraggeber: INGGEO Baugrundbüro Probenahme durch: Auftraggeber

Probenahme am: Probenehmer: Herr Behm

Probenbezeichung: MP 12

Probenahmeort: 15344 Strausberg, Am Annafließ

Analysenergebnisse im Feststoff (Trockensubstanz)

Sand

Zuordnungswerte Feststoff für Boden (Tabelle II 1.2.-2 und Tabelle II 1.2-4)

Parameter		Analysenwert	Z 0	Z1	Z 2	Z 0*	ZK
Arsen	mg/kg TS	2,6	10	45	150	15 ⁴⁾	Z 0
Blei	mg/kg TS	13	40	210	700	140	Z 0
Cadmium	mg/kg TS	0,15	0,4	3	10	1°)	Z 0
Chrom (gesamt)	mg/kg TS	8,1	30	180	600	120	Z 0
Kupfer	mg/kg TS	10	20	120	400	80	Z 0
Nickel	mg/kg TS	7,1	15	150	500	100	Z 0
Thallium	mg/kg TS	n.a.	0,4	2,1	7	0,76)	-
Quecksilber	mg/kg TS	<0,03	0,1	1,5	5	1	Z 0
Zink	mg/kg TS	26	60	450	1500	300	Z 0
Cyanide gesamt	mg/kg TS	n.a.	-	3	10	-	-
TOC	Masse%	0,24	$0,5(1,0)^{3)}$	1,5	5	0,5(1,0) ³⁾	Z 0
EOX	mg/kg TS	<0,5	1	3 ¹⁾	10	1 ¹⁾	Z 0
Kohlenwasserstoffe							
$(C_{10}-C_{22})$	mg/kg TS	<20	100	300	1000	200	Z 0
Kohlenwasserstoffe							
(C ₁₀ -C ₄₀)	mg/kg TS	<20	100	600	2000	400	Z 0
BTX	mg/kg TS	n.a.	1	1	1	1	-
LHKW	mg/kg TS	n.a.	1	1	1	1	-
PCB ₆	mg/kg TS	n.a.	0,05	0,15	0,5	0,1	-
PAK ₁₆	mg/kg TS	1,01	3	3(9) ²⁾	30	3	Z 0
Benzo(a)pyren	mg/kg TS	0,1	0,3	0,9	3	0,6	Z 0

¹⁾ bei Uberschreitung ist die Ursache zu prüfen

- 3) bei C:N-Verhältnis >25 beträgt der Zuordnungswert 1 Masse%
- 4) Der Wert 15 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 20 mg/kg.
- 5) Der Wert 1 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,5 mg/kg.

6) Der Wert 0,7 mg/kg gilt für Bodenmaterial Sand u. Lehm/Schluff. Für das Bodenmaterial Ton gilt der Wert von 1,0 mg/kg.

Analysenergebnisse im Eluat

Zuordnungswerte Eluat für Boden (Tabelle II. 1.2-3 und Tabelle II. 1.2.-5)

Parameter	Dimension	Analysenwert	Z 0/Z0*	Z1.1	Z1.2	Z 2	ZK
pH-Wert		7,8	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	Z 0
Leitfähigkeit	μS/cm	74,5	250	250	1500	2000	Z 0
Chlorid	mg/l	9,4	30	30	50	100 ⁷⁾	Z 0
Sulfat	mg/l	6,6	20	20	50	200	Z 0
Cyanid	μg/l	n.a.	5	5	10	20	-
Arsen	μg/l	<10	14	14	20	60 ⁸⁾	Z 0
Blei	μg/l	<10	40	40	80	200	Z 0
Cadmium	μg/l	<0,5	1,5	1,5	3	6	Z 0
Chrom (gesamt)	μg/l	<3	12,5	12,5	25	60	Z 0
Kupfer	μg/l	2	20	20	60	100	Z 0
Nickel	μg/l	<2	15	15	20	70	Z 0
Quecksilber	μg/l	<0,2	<0,5	<0,5	1	2	Z 0
Zink	μg/l	<1	150	150	200	600	Z 0
Phenolindex	μg/l	n.a.	20	20	40	100	-

7) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l

n.n. nicht nachgewiesen

n.b. nicht bestimmbar

8) bei natürlichen Böden in Ausnahmefällen bis 120 $\mu g/l$

n.a. nicht analysiert

Berlin, den 10.10.2018

Verfüllung von Abgrabungen

T. Rehausen WESSLING GmbH Haynauer Str. 60 12249 Berlin

Hinweis

²⁾ für >3 und ≤ 9 mg/kg Ausnahmeregelung

www.wessling.de

Geschäftsfeld:

WESSLING GmbH Haynauer Straße 60 · 12249 Berlin

WESSLING GmbH, Haynauer Str. 60, 12249 Berlin

Ansprechpartner:
Durchwahl:
Fax:
E-Mail:

T. Rehausen +49 30 77 507 441

Umwelt

+49 30 77 507 444 Till.Rehausen @wessling.de

INGGEO Baugrundbüro Herr Dipl.-Ing. Danny Behm Arkonaplatz 6 10435 Berlin

Prüfbericht

BV: 15344 Strausberg, Am Annafließ

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18		Datum 10.10.2018
Probe Nr.			18-156262-01	18-156262-02	1
Eingangsdatum			28.09.2018	28.09.2018	1
Bezeichnung			MP 1	MP2	1
Probenart			Boden	Boden	1
Probenahme dure	ch		Auftraggeber	Auftraggeber	1
Probenehmer			Herr Behm	Herr Behm	1
Probengefäß			1 BG	1 BG	1
Anzahl Gefäße			1	1	1
Untersuchungsbe	eginn		28.09.2018	28.09.2018	1
Untersuchungser	nde		10.10.2018	10.10.2018	1

In der Originalsubstanz

Probe Nr.		18-156262-01	18-156262-02
Bezeichnung		MP1	MP2
Farbe	OS	braun	braun
Aussehen	OS	Sand+Steine	Sand+Steine

Prüfbericht Nr. CBE18-019423-1	Auft	rag Nr.	CBE-07689-18		Datum 10.10.20
Probenvorbereitung					
Probe Nr.			18-156262-01	18-156262-02	
Bezeichnung			MP 1	MP2	1
Volumen des Auslaugungsmittel	ml	OS	996	999	1
Frischmasse der Messprobe	g	OS	104	101	1
Königswasser-Extrakt	,	TS	05.10.2018	05.10.2018	1
Feuchtegehalt	%	TS	3,5	1,4	1
Physikalische Untersuchung				•	_
Probe Nr.			18-156262-01	18-156262-02	7
Bezeichnung			MP 1	MP2	1
Trockenrückstand	Gew%	OS	96,5	98,6	1

Summenparameter

Probe Nr.			18-156262-01	18-156262-02
Bezeichnung			MP 1	MP2
EOX	mg/kg	TS	<0,5	<0,5
Kohlenwasserstoff-Index > C10-C22	mg/kg	TS	<20	<20
Kohlenwasserstoff-Index	mg/kg	TS	<20	<20
тос	Gew%	TS	0,12	0,071

Im Königswasser-Extrakt

Probe Nr.			18-156262-01	18-156262-02
Bezeichnung			MP 1	MP2
Arsen (As)	mg/kg	TS	2,9	2,1
Blei (Pb)	mg/kg	TS	12	3,3
Cadmium (Cd)	mg/kg	TS	0,18	0,12
Chrom (Cr)	mg/kg	TS	8,4	6,2
Kupfer (Cu)	mg/kg	TS	7,2	4,5
Nickel (Ni)	mg/kg	TS	6,4	5,7
Quecksilber (Hg)	mg/kg	TS	<0,03	<0,03
Zink (Zn)	mg/kg	TS	42	18

Datum 10.10.2018

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.		CBE-07689-18	
Polycyclische	aromatische Kohlenw				
Probe Nr.				18-156262-01	18-156262-02
Bezeichnung				MP 1	MP2
Naphthalin		mg/kg	TS	<0,06	<0,06
Acenaphthyle	n	mg/kg	TS	<0,06	<0,06
Acenaphthen		mg/kg	TS	<0,06	<0,06
Fluoren		mg/kg	TS	<0,06	<0,06
Phenanthren		mg/kg	TS	0,15	<0,06
Anthracen		mg/kg	TS	<0,06	<0,06
Fluoranthen		mg/kg	TS	0,39	<0,06
Pyren		mg/kg	TS	0,34	<0,06
Benzo(a)anth	racen	mg/kg	TS	0,17	<0,06
Chrysen		mg/kg	TS	0,18	<0,06
Benzo(b)fluor	anthen	mg/kg	TS	0,24	<0,06
Benzo(k)fluor	anthen	mg/kg	TS	0,10	<0,06
Benzo(a)pyre	n	mg/kg	TS	0,32	<0,06
Dibenz(ah)an	thracen	mg/kg	TS	0,07	<0,06
				-	

Im Eluat

Physikalische Untersuchung

Summe nachgewiesener PAK

Benzo(ghi)perylen

Indeno(1,2,3-cd)pyren

Probe Nr.			18-156262-01	18-156262-02
Bezeichnung			MP 1	MP2
pH-Wert		W/E	8,1	7,8
Messtemperatur pH-Wert		W/E	20,6	20,4
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	47,6	35,6

mg/kg

mg/kg

mg/kg

TS

TS

TS

0,13

0,09

2,17

<0,06

<0,06

-/-

Prüfbericht Nr.	CBE18-019423-1	Auf	trag Nr.	CBE-07689-18		Datum	10.10.2018
Kationen, Anio	nen und Nichtmetalle						
Probe Nr.				18-156262-01	18-156262-02	7	
Bezeichnung				MP 1	MP2	1	
Chlorid (CI)		mg/l	W/E	4,0	3,3	1	
Sulfat (SO4)		mg/l	W/E	5,9	3,4	1	

Probe Nr.			18-156262-01	18-156262-02
Bezeichnung			MP 1	MP2
Arsen (As)	μg/l	W/E	<10	<10
Blei (Pb)	μg/l	W/E	<10	<10
Cadmium (Cd)	μg/l	W/E	<0,5	<0,5
Chrom (Cr)	μg/l	W/E	<3,0	<3,0
Kupfer (Cu)	μg/l	W/E	<2,0	<2,0
Nickel (Ni)	μg/l	W/E	<2,0	<2,0
Quecksilber (Hg)	μg/l	W/E	<0,2	<0,2
Zink (Zn)	μg/l	W/E	<1,0	<1,0

Datum 10.10.2018

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	
Probe Nr.			18-156262-03	18-156262-04
Eingangsdatum			28.09.2018	28.09.2018
Bezeichnung			MP3	MP 4
Probenart			Boden	Boden
Probenahme durc	ch		Auftraggeber	Auftraggeber
Probenehmer			Herr Behm	Herr Behm
Probengefäß			1 BG	1 BG
Anzahl Gefäße			1	1
Untersuchungsbe	eginn		28.09.2018	28.09.2018
Untersuchungser	nde		10.10.2018	10.10.2018

In der Originalsubstanz

Probe Nr.		18-156262-03	18-156262-04
Bezeichnung		MP3	MP4
Farbe	OS	braun	braun
Aussehen	OS	Sand+Steine	Sand+Steine

Probenvorbereitung

Probe Nr.			18-156262-03	18-156262-04
Bezeichnung			MP3	MP4
Volumen des Auslaugungsmittel	ml	os	997	997
Frischmasse der Messprobe	g	os	103	103
Königswasser-Extrakt		TS	05.10.2018	05.10.2018
Feuchtegehalt	%	TS	2,7	2,7

Physikalische Untersuchung

Probe Nr.			18-156262-03	18-156262-04
Bezeichnung			MP3	MP4
Trockenrückstand	Gew%	os	97,3	97,3

Summenparameter

Probe Nr.			18-156262-03	18-156262-04
Bezeichnung			MP3	MP4
EOX	mg/kg	TS	<0,5	<0,5
Kohlenwasserstoff-Index > C10-C22	mg/kg	TS	<20	<20
Kohlenwasserstoff-Index	mg/kg	TS	<20	<20
тос	Gew%	TS	0,43	0,25

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10.2018

Im Königswasser-Extrakt

Elemente

Probe Nr.			18-156262-03	18-156262-04
Bezeichnung			MP3	MP4
Arsen (As)	mg/kg	TS	4,2	2,6
Blei (Pb)	mg/kg	TS	22	10
Cadmium (Cd)	mg/kg	TS	0,42	0,16
Chrom (Cr)	mg/kg	TS	13	6,5
Kupfer (Cu)	mg/kg	TS	12	14
Nickel (Ni)	mg/kg	TS	11	5,5
Quecksilber (Hg)	mg/kg	TS	0,04	<0,03
Zink (Zn)	mg/kg	TS	380	33

Polycyclische aromatische Kohlenwasserstoffe (PAK)

Probe Nr.			18-156262-03	18-156262-04
Bezeichnung			MP3	MP4
Naphthalin	mg/kg	TS	<0,06	<0,06
Acenaphthylen	mg/kg	TS	<0,06	<0,06
Acenaphthen	mg/kg	TS	<0,06	<0,06
Fluoren	mg/kg	TS	<0,06	<0,06
Phenanthren	mg/kg	TS	<0,06	0,21
Anthracen	mg/kg	TS	<0,06	<0,06
Fluoranthen	mg/kg	TS	0,08	0,26
Pyren	mg/kg	TS	0,07	0,19
Benzo(a)anthracen	mg/kg	TS	0,07	0,09
Chrysen	mg/kg	TS	0,06	0,10
Benzo(b)fluoranthen	mg/kg	TS	0,07	0,11
Benzo(k)fluoranthen	mg/kg	TS	<0,06	<0,06
Benzo(a)pyren	mg/kg	TS	0,07	0,10
Dibenz(ah)anthracen	mg/kg	TS	<0,06	<0,06
Benzo(ghi)perylen	mg/kg	TS	0,06	0,08
Indeno(1,2,3-cd)pyren	mg/kg	TS	<0,06	<0,06
Summe nachgewiesener PAK	mg/kg	TS	0,476	1,14

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10.2018
i iuibchcht ivi.	ODE 10-013-20-1	Authag N.	ODE-07003-10	Datam 10:10:2010

Im Eluat

Physikalische Untersuchung

Probe Nr.			18-156262-03	18-156262-04
Bezeichnung			MP3	MP4
pH-Wert		W/E	10,6	8,4
Messtemperatur pH-Wert	°C	W/E	20,3	20,2
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	152	73,1

Kationen, Anionen und Nichtmetalle

Probe Nr.			18-156262-03	18-156262-04
Bezeichnung			MP3	MP4
Chlorid (CI)	mg/l	W/E	8,0	6,3
Sulfat (SO4)	mg/l	W/E	10	7,4

Probe Nr.			18-156262-03	18-156262-04
Bezeichnung			MP3	MP4
Arsen (As)	μg/l	W/E	<10	<10
Blei (Pb)	μg/l	W/E	<10	<10
Cadmium (Cd)	μg/l	W/E	<0,5	<0,5
Chrom (Cr)	μg/l	W/E	<3,0	<3,0
Kupfer (Cu)	μg/l	W/E	9,0	<2,0
Nickel (Ni)	μg/l	W/E	<2,0	<2,0
Quecksilber (Hg)	μg/l	W/E	<0,2	<0,2
Zink (Zn)	μg/l	W/E	<1,0	<1,0

Datum 10.10.2018

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	
Probe Nr.			18-156262-05	18-156262-06
Eingangsdatum			28.09.2018	28.09.2018
Bezeichnung			MP5	MP6
Probenart			Boden	Boden
Probenahme durc	:h		Auftraggeber	Auftraggeber
Probenehmer			Herr Behm	Herr Behm
Probengefäß			1 BG	1 BG
Anzahl Gefäße			1	1
Untersuchungsbe	eginn		28.09.2018	28.09.2018
Untersuchungser	nde		10.10.2018	10.10.2018

In der Originalsubstanz

Probe Nr.		18-156262-05	18-156262-06
Bezeichnung		MP5	MP6
Farbe	OS	braun	schwarz-rot
Aussehen	OS	Sand+Steine	Bauschutt

Probenvorbereitung

Probe Nr.			18-156262-05	18-156262-06
Bezeichnung			MP5	MP6
Volumen des Auslaugungsmittel	ml	os	995	997
Frischmasse der Messprobe	g	os	105	103
Königswasser-Extrakt		TS	05.10.2018	05.10.2018
Feuchtegehalt	%	TS	4,7	2,8

Physikalische Untersuchung

Probe Nr.			18-156262-05	18-156262-06
Bezeichnung			MP5	MP6
Trockenrückstand	Gew%	os	95,3	97,2

Summenparameter

Probe Nr.			18-156262-05	18-156262-06
Bezeichnung			MP5	MP6
EOX	mg/kg	TS	<0,5	<0,5
Kohlenwasserstoff-Index > C10-C22	mg/kg	TS	<20	<20
Kohlenwasserstoff-Index	mg/kg	TS	<20	50
тос	Gew%	TS	0,23	0,15

Im Königswasser-Extrakt

Elemente

Probe Nr.			18-156262-05	18-156262-06
Bezeichnung			MP5	MP6
Arsen (As)	mg/kg	TS	3,4	6,5
Blei (Pb)	mg/kg	TS	12	11
Cadmium (Cd)	mg/kg	TS	0,2	0,24
Chrom (Cr)	mg/kg	TS	9,9	17
Kupfer (Cu)	mg/kg	TS	12	13
Nickel (Ni)	mg/kg	TS	7,6	12
Quecksilber (Hg)	mg/kg	TS	0,04	<0,03
Zink (Zn)	mg/kg	TS	29	46

Polycyclische aromatische Kohlenwasserstoffe (PAK)

Probe Nr.			18-156262-05	18-156262-06
Bezeichnung			MP5	MP6
Naphthalin	mg/kg	TS	<0,06	<0,06
Acenaphthylen	mg/kg	TS	<0,06	<0,06
Acenaphthen	mg/kg	TS	<0,06	0,07
Fluoren	mg/kg	TS	<0,06	0,10
Phenanthren	mg/kg	TS	<0,06	1,2
Anthracen	mg/kg	TS	<0,06	0,50
Fluoranthen	mg/kg	TS	0,07	1,9
Pyren	mg/kg	TS	0,09	1,4
Benzo(a)anthracen	mg/kg	TS	0,07	0,59
Chrysen	mg/kg	TS	<0,06	0,57
Benzo(b)fluoranthen	mg/kg	TS	<0,06	0,68
Benzo(k)fluoranthen	mg/kg	TS	<0,06	0,39
Benzo(a)pyren	mg/kg	TS	<0,06	0,74
Dibenz(ah)anthracen	mg/kg	TS	<0,06	0,08
Benzo(ghi)perylen	mg/kg	TS	0,06	0,39
Indeno(1,2,3-cd)pyren	mg/kg	TS	<0,06	0,37
Summe nachgewiesener PAK	mg/kg	TS	0,289	8,93

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10.2018
-----------------	----------------	-------------	--------------	------------------

Im Eluat

Physikalische Untersuchung

Probe Nr.			18-156262-05	18-156262-06
Bezeichnung			MP5	MP6
pH-Wert		W/E	8,1	10,4
Messtemperatur pH-Wert	°C	W/E	20,3	20,3
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	65,9	132

Kationen, Anionen und Nichtmetalle

Probe Nr.			18-156262-05	18-156262-06
Bezeichnung			MP5	MP6
Chlorid (CI)	mg/l	W/E	4,2	5,6
Sulfat (SO4)	mg/l	W/E	6,7	7,9

Probe Nr.			18-156262-05	18-156262-06
Bezeichnung			MP5	MP6
Arsen (As)	μg/l	W/E	<10	<10
Blei (Pb)	μg/l	W/E	<10	<10
Cadmium (Cd)	μg/l	W/E	<0,5	<0,5
Chrom (Cr)	μg/l	W/E	<3,0	<3,0
Kupfer (Cu)	μg/l	W/E	2,0	4,0
Nickel (Ni)	μg/l	W/E	<2,0	<2,0
Quecksilber (Hg)	μg/l	W/E	<0,2	<0,2
Zink (Zn)	μg/l	W/E	<1,0	<1,0

Datum 10.10.2018

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	
Probe Nr.			18-156262-07	18-156262-08
Eingangsdatum			28.09.2018	28.09.2018
Bezeichnung			MP7	MP8
Probenart			Boden	Boden
Probenahme durc	:h		Auftraggeber	Auftraggeber
Probenehmer			Herr Behm	Herr Behm
Probengefäß			1 BG	1 BG
Anzahl Gefäße			1	1
Untersuchungsbe	eginn		28.09.2018	28.09.2018
Untersuchungser	nde		10.10.2018	10.10.2018

In der Originalsubstanz

Probe Nr.		18-156262-07	18-156262-08
Bezeichnung		MP7	MP8
Farbe	OS	braun	braun
Aussehen	OS	Sand+Steine	Sand+Steine

Probenvorbereitung

Probe Nr.			18-156262-07	18-156262-08
Bezeichnung			MP 7	MP8
Volumen des Auslaugungsmittel	ml	os	995	996
Frischmasse der Messprobe	g	os	105	104
Königswasser-Extrakt		TS	05.10.2018	05.10.2018
Feuchtegehalt	%	TS	5,1	3,7

Physikalische Untersuchung

Probe Nr.			18-156262-07	18-156262-08
Bezeichnung			MP7	MP8
Trockenrückstand	Gew%	os	94,9	96,3

Summenparameter

Probe Nr.			18-156262-07	18-156262-08
Bezeichnung			MP7	MP8
EOX	mg/kg	TS	<0,5	<0,5
Kohlenwasserstoff-Index > C10-C22	mg/kg	TS	<20	<20
Kohlenwasserstoff-Index	mg/kg	TS	<20	<20
TOC	Gew%	TS	0,21	0,59

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10.2018

Im Königswasser-Extrakt

Elemente

Probe Nr.			18-156262-07	18-156262-08
Bezeichnung			MP7	MP8
Arsen (As)	mg/kg	TS	3,1	2,8
Blei (Pb)	mg/kg	TS	14	17
Cadmium (Cd)	mg/kg	TS	0,31	0,23
Chrom (Cr)	mg/kg	TS	13	15
Kupfer (Cu)	mg/kg	TS	13	12
Nickel (Ni)	mg/kg	TS	15	13
Quecksilber (Hg)	mg/kg	TS	<0,03	0,07
Zink (Zn)	mg/kg	TS	40	48

Polycyclische aromatische Kohlenwasserstoffe (PAK)

Probe Nr.			18-156262-07	18-156262-08
Bezeichnung			MP7	MP8
Naphthalin	mg/kg	TS	<0,06	<0,06
Acenaphthylen	mg/kg	TS	<0,06	<0,06
Acenaphthen	mg/kg	TS	<0,06	<0,06
Fluoren	mg/kg	TS	<0,06	<0,06
Phenanthren	mg/kg	TS	0,12	0,24
Anthracen	mg/kg	TS	<0,06	<0,06
Fluoranthen	mg/kg	TS	0,13	0,45
Pyren	mg/kg	TS	0,13	0,34
Benzo(a)anthracen	mg/kg	TS	<0,06	0,15
Chrysen	mg/kg	TS	<0,06	0,19
Benzo(b)fluoranthen	mg/kg	TS	<0,06	0,24
Benzo(k)fluoranthen	mg/kg	TS	<0,06	0,12
Benzo(a)pyren	mg/kg	TS	0,08	0,23
Dibenz(ah)anthracen	mg/kg	TS	<0,06	<0,06
Benzo(ghi)perylen	mg/kg	TS	0,08	0,16
Indeno(1,2,3-cd)pyren	mg/kg	TS	<0,06	0,12
Summe nachgewiesener PAK	mg/kg	TS	0,539	2,26

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10.2018
-----------------	----------------	-------------	--------------	------------------

Im Eluat

Physikalische Untersuchung

Probe Nr.			18-156262-07	18-156262-08
Bezeichnung	•		MP 7	MP8
pH-Wert	•	W/E	8,5	8,4
Messtemperatur pH-Wert	℃	W/E	20,3	20,2
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	61,2	67,4

Kationen, Anionen und Nichtmetalle

Probe Nr.			18-156262-07	18-156262-08
Bezeichnung			MP7	MP8
Chlorid (CI)	mg/l	W/E	5,7	3,4
Sulfat (SO4)	mg/l	W/E	8,1	7,1

Probe Nr.			18-156262-07	18-156262-08
Bezeichnung			MP 7	MP8
Arsen (As)	µg/l	W/E	<10	<10
Blei (Pb)	µg/l	W/E	<10	<10
Cadmium (Cd)	µg/l	W/E	<0,5	<0,5
Chrom (Cr)	μg/l	W/E	<3,0	<3,0
Kupfer (Cu)	µg/l	W/E	<2,0	2,0
Nickel (Ni)	µg/l	W/E	<2,0	<2,0
Quecksilber (Hg)	µg/l	W/E	<0,2	<0,2
Zink (Zn)	μg/l	W/E	<1,0	<1,0

Datum 10.10.2018

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	
Probe Nr.			18-156262-09	18-156262-10
Eingangsdatum			28.09.2018	28.09.2018
Bezeichnung			MP9	MP 10
Probenart			Boden	Boden
Probenahme durc	:h		Auftraggeber	Auftraggeber
Probenehmer			Herr Behm	Herr Behm
Probengefäß			1 BG	1 BG
Anzahl Gefäße			1	1
Untersuchungsbe	eginn		28.09.2018	28.09.2018
Untersuchungser	nde		10.10.2018	10.10.2018

In der Originalsubstanz

Probe Nr.		18-156262-09	18-156262-10
Bezeichnung		MP9	MP 10
Farbe	OS	braun	braun
Aussehen	OS	Sand+Steine	Sand+Steine

Probenvorbereitung

Probe Nr.			18-156262-09	18-156262-10
Bezeichnung	•		MP9	MP 10
Volumen des Auslaugungsmittel	ml	os	994	994
Frischmasse der Messprobe	g	os	106	106
Königswasser-Extrakt	•	TS	05.10.2018	05.10.2018
Feuchtegehalt	%	TS	5,2	5,4

Physikalische Untersuchung

Probe Nr.			18-156262-09	18-156262-10
Bezeichnung			MP9	MP 10
Trockenrückstand	Gew%	os	94,8	94,6

Summenparameter

Probe Nr.			18-156262-09	18-156262-10
Bezeichnung			MP9	MP 10
EOX	mg/kg	TS	<0,5	<0,5
Kohlenwasserstoff-Index > C10-C22	mg/kg	TS	<20	<20
Kohlenwasserstoff-Index	mg/kg	TS	<20	<20
TOC	Gew%	TS	0,19	0,20

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10.2018

Im Königswasser-Extrakt

Elemente

Probe Nr.			18-156262-09	18-156262-10
Bezeichnung			MP9	MP 10
Arsen (As)	mg/kg	TS	2,3	2,6
Blei (Pb)	mg/kg	TS	8,7	9,9
Cadmium (Cd)	mg/kg	TS	0,13	0,17
Chrom (Cr)	mg/kg	TS	7,7	7,7
Kupfer (Cu)	mg/kg	TS	7,4	7,2
Nickel (Ni)	mg/kg	TS	5,5	6,3
Quecksilber (Hg)	mg/kg	TS	<0,03	<0,03
Zink (Zn)	mg/kg	TS	21	26

Polycyclische aromatische Kohlenwasserstoffe (PAK)

Probe Nr.			18-156262-09	18-156262-10
Bezeichnung			MP9	MP 10
Naphthalin	mg/kg	TS	<0,06	<0,06
Acenaphthylen	mg/kg	TS	<0,06	<0,06
Acenaphthen	mg/kg	TS	<0,06	<0,06
Fluoren	mg/kg	TS	<0,06	<0,06
Phenanthren	mg/kg	TS	0,38	<0,06
Anthracen	mg/kg	TS	<0,06	<0,06
Fluoranthen	mg/kg	TS	0,34	0,08
Pyren	mg/kg	TS	0,26	0,09
Benzo(a)anthracen	mg/kg	TS	0,09	<0,06
Chrysen	mg/kg	TS	0,11	<0,06
Benzo(b)fluoranthen	mg/kg	TS	0,11	<0,06
Benzo(k)fluoranthen	mg/kg	TS	<0,06	<0,06
Benzo(a)pyren	mg/kg	TS	0,12	<0,06
Dibenz(ah)anthracen	mg/kg	TS	<0,06	<0,06
Benzo(ghi)perylen	mg/kg	TS	0,09	<0,06
Indeno(1,2,3-cd)pyren	mg/kg	TS	0,07	<0,06
Summe nachgewiesener PAK	mg/kg	TS	1,57	0,176

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10.2018
-----------------	----------------	-------------	--------------	------------------

Im Eluat

Physikalische Untersuchung

Probe Nr.			18-156262-09	18-156262-10
Bezeichnung			MP9	MP 10
pH-Wert		W/E	8,0	7,8
Messtemperatur pH-Wert	∞C	W/E	20,3	20,6
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	77,3	98,6

Kationen, Anionen und Nichtmetalle

Probe Nr.			18-156262-09	18-156262-10
Bezeichnung			MP9	MP 10
Chlorid (CI)	mg/l	W/E	6,2	7,6
Sulfat (SO4)	mg/l	W/E	8,4	12

Probe Nr.			18-156262-09	18-156262-10
Bezeichnung			MP9	MP 10
Arsen (As)	μg/l	W/E	<10	<10
Blei (Pb)	μg/l	W/E	<10	<10
Cadmium (Cd)	μg/l	W/E	<0,5	<0,5
Chrom (Cr)	μg/l	W/E	<3,0	<3,0
Kupfer (Cu)	μg/l	W/E	<2,0	<2,0
Nickel (Ni)	μg/l	W/E	<2,0	<2,0
Quecksilber (Hg)	μg/l	W/E	<0,2	<0,2
Zink (Zn)	μg/l	W/E	<1,0	<1,0

Datum 10.10.2018

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	
Probe Nr.			18-156262-11	18-156262-12
Eingangsdatum			28.09.2018	28.09.2018
Bezeichnung			MP 11	MP 12
Probenart			Boden	Boden
Probenahme durc	ch		Auftraggeber	Auftraggeber
Probenehmer			Herr Behm	Herr Behm
Probengefäß			1 BG	1 BG
Anzahl Gefäße			1	1
Untersuchungsbe	eginn		28.09.2018	28.09.2018
Untersuchungser	nde		10.10.2018	10.10.2018

In der Originalsubstanz

Probe Nr.		18-156262-11	18-156262-12
Bezeichnung		MP 11	MP 12
Farbe	OS	braun	braun
Aussehen	OS	Sand+Steine	Sand+Steine

Probenvorbereitung

Probe Nr.			18-156262-11	18-156262-12
Bezeichnung	•		MP 11	MP 12
Volumen des Auslaugungsmittel	ml	os	997	997
Frischmasse der Messprobe	g	os	103	103
Königswasser-Extrakt	•	TS	05.10.2018	05.10.2018
Feuchtegehalt	%	TS	2,9	3,1

Physikalische Untersuchung

Probe Nr.			18-156262-11	18-156262-12
Bezeichnung			MP 11	MP 12
Trockenrückstand	Gew%	os	97,1	96,9

Summenparameter

Probe Nr.			18-156262-11	18-156262-12
Bezeichnung			MP 11	MP 12
EOX	mg/kg	TS	<0,5	<0,5
Kohlenwasserstoff-Index > C10-C22	mg/kg	TS	<20	<20
Kohlenwasserstoff-Index	mg/kg	TS	<20	<20
тос	Gew%	TS	0,65	0,24

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10,2018
i idiboliciti iii.	000.0.0.0	/ tarting iti.	000 10	Batam 1011012010

Im Königswasser-Extrakt

Elemente

Probe Nr.			18-156262-11	18-156262-12
Bezeichnung	,		MP 11	MP 12
Arsen (As)	mg/kg	TS	3,3	2,6
Blei (Pb)	mg/kg	TS	15	13
Cadmium (Cd)	mg/kg	TS	0,21	0,15
Chrom (Cr)	mg/kg	TS	16	8,1
Kupfer (Cu)	mg/kg	TS	12	10
Nickel (Ni)	mg/kg	TS	11	7,1
Quecksilber (Hg)	mg/kg	TS	<0,03	<0,03
Zink (Zn)	mg/kg	TS	33	26

Polycyclische aromatische Kohlenwasserstoffe (PAK)

Probe Nr.			18-156262-11	18-156262-12
Bezeichnung			MP 11	MP 12
Naphthalin	mg/kg	TS	<0,06	<0,06
Acenaphthylen	mg/kg	TS	<0,06	<0,06
Acenaphthen	mg/kg	TS	<0,06	<0,06
Fluoren	mg/kg	TS	<0,06	<0,06
Phenanthren	mg/kg	TS	0,13	0,18
Anthracen	mg/kg	TS	<0,06	<0,06
Fluoranthen	mg/kg	TS	0,21	0,25
Pyren	mg/kg	TS	0,18	0,19
Benzo(a)anthracen	mg/kg	TS	0,08	0,08
Chrysen	mg/kg	TS	0,08	0,08
Benzo(b)fluoranthen	mg/kg	TS	0,08	0,08
Benzo(k)fluoranthen	mg/kg	TS	<0,06	<0,06
Benzo(a)pyren	mg/kg	TS	0,10	0,1
Dibenz(ah)anthracen	mg/kg	TS	<0,06	<0,06
Benzo(ghi)perylen	mg/kg	TS	0,07	0,06
Indeno(1,2,3-cd)pyren	mg/kg	TS	<0,06	<0,06
Summe nachgewiesener PAK	mg/kg	TS	0,926	1,01

Prüfbericht Nr.	CBE18-019423-1	Auftrag Nr.	CBE-07689-18	Datum 10.10.2018

Im Eluat

Physikalische Untersuchung

Probe Nr.			18-156262-11	18-156262-12
Bezeichnung			MP 11	MP 12
pH-Wert		W/E	7,7	7,8
Messtemperatur pH-Wert	℃	W/E	20,6	20,4
Leitfähigkeit [25°C], elektrische	μS/cm	W/E	56,2	74,5

Kationen, Anionen und Nichtmetalle

Probe Nr.			18-156262-11	18-156262-12
Bezeichnung			MP 11	MP 12
Chlorid (CI)	mg/l	W/E	3,7	9,4
Sulfat (SO4)	mg/l	W/E	6,2	6,6

Elemente

Probe Nr.			18-156262-11	18-156262-12
Bezeichnung			MP 11	MP 12
Arsen (As)	μg/l	W/E	<10	<10
Blei (Pb)	μg/l	W/E	<10	<10
Cadmium (Cd)	μg/l	W/E	<0,5	<0,5
Chrom (Cr)	μg/l	W/E	<3,0	<3,0
Kupfer (Cu)	μg/l	W/E	2,0	2,0
Nickel (Ni)	μg/l	W/E	<2,0	<2,0
Quecksilber (Hg)	μg/l	W/E	<0,2	<0,2
Zink (Zn)	μg/l	W/E	4,0	<1,0

Abkürzungen und Methoden

Abkurzungen und wethoden	
Aussehen, Farbe, Geruch (F)	WES 088
Trockenrückstand/Wassergehalt in Abfällen	DIN EN 14346 Verf. A (2007-03) ^A
Kohlenwasserstoffe in Abfall (GC)	DIN EN 14039 (2005-01) ^A
Extrahierbare organische Halogenverbindungen (EOX)	DIN 38414 S17 (2017-01) ^A
Polycyclische aromatische Kohlenwasserstoffe (PAK)	DIN 38414 S23 (2002-02) ^A
Gesamter organischer Kohlenstoff (TOC)	DIN ISO 10694 (1996-08) ^A
Königswasser-Extrakt vom Feststoff	DIN ISO 11466 (1997-06) ^A
Metalle/Elemente in Feststoff	DIN EN ISO 11885 (2009-09) ^A
Quecksilber	DIN ISO 16772 (2005-06) ^A
Auslaugung, Schüttelverfahren W/F-10 l/kg	DIN EN 12457-4 (2003-01) ^A
Feuchtegehalt	DIN EN 12457-4 (2003-01) ^A
pH-Wert in Wasser/Eluat	DIN 38404-5 (2009-07) ^A
Leitfähigkeit, elektrisch	DIN EN 27888 (1993-11) ^A
Gelöste Anionen, Chlorid in Wasser/Eluat	DIN EN ISO 10304-1 (2009-07) ^A
Gelöste Anionen, Sulfat in Wasser/Eluat	DIN EN ISO 10304-1 (2009-07) ^A
Metalle/Elemente in Wasser/Eluat	DIN EN ISO 11885 (2009-09) ^A
Quecksilber in Wasser/Eluat (AAS)	DIN EN 1483 (2007-07) ^A
OS	Originalsubstanz

ausführender Standort

Umweltanalytik Oppin Umweltanalytik Oppin

Seite 19 von 20

Trockensubstanz

TS

W/E Wasser/Eluat

Dieses Dokument wurde elektronisch erstellt und ist auch ohne Unterschrift gültig.

Till Rehausen

Dipl.-Ing. Technischer Umweltschutz Projektleiter

Till Pela

Legende der Kurzzeichen

Darstellung der Ergebnisse in den Bohr- bzw. Sondierprofilen

Benennung, 2	Zeichen und Farl	Kurzformer	1	
Hauptanteil	Nebenanteil	Zeichen	Hauptanteil	Nebenanteil
Kies	kiesig	0000	G	g
Grobkies	grobkiesig	0000	gG	99
Mittelkies	mittelkiesig	0000	mG	mg
Feinkies	feinkiesig	000	fG	fg
Sand	sandig		S	s
Grobsand	grobsandig	8	gS	gs
Mittelsand	mittelsandig		mS	ms
Feinsand	feinsandig		fS	fs
Schluff	schluffig	****	U	u
Ton	tonig	_= =	Т	t
Torf, Humus	torfig, humos		Н	h
Steine	steinig	0000	X	х
Blöcke	mit Blöcken	80 00	Y	у
Kurzformen für gebräuchliche Bezeichnungen von Böden:				
Kurzformen f	ür gebräuchliche	Bezeichn	ungen von B	öden:
Kurzformen f Benennung	ür gebräuchliche	Bezeichn		öden: ormen
	ür gebräuchliche	Bezeichn	Kurzf	
Benennung	ür gebräuchliche		Kurzf	ormen
Benennung Mutterboden		Mu /9/9/9/ /9/9/9/ /8/8/8/	Kurzf N	ormen 1u
Benennung Mutterboden Geschiebelehm			Kurzf N	ormen Ilu -g
Benennung Mutterboden Geschiebelehm Geschiebemerg		Mu /9/9/9/ /9/9/9/ /8/8/8/	Kurzf N L	ormen /lu .g
Benennung Mutterboden Geschiebelehm Geschiebemerg Löß		Mu /9/9/9/ /9/9/9/ /8/8/8/	Kurzf N L	ormen /lu .g /lg .ö
Benennung Mutterboden Geschiebelehm Geschiebemerg Löß Lößlehm Klei, Schlick		Mu /9/9/9/ /9/9/9/ /8/8/8/	Kurzf N L	ormen /lu .g /lg .ö
Benennung Mutterboden Geschiebelehm Geschiebemerg Löß Lößlehm Klei, Schlick	el	Mu /9/9/9/ /9/9/9/ /8/8/8/	Kurzf N L V	ormen //u g //g .ö öl
Benennung Mutterboden Geschiebelehm Geschiebemerg Löß Lößlehm Klei, Schlick Wiesenkalk, See	el ekalk, Seekreide	Mu /9/9/9/ /9/9/9/ /8/8/8/	Kurzf N L V	ormen //u g //g .ö öl Kl

Bodenklassifikation für bautechnische Zwecke (in Anlehnung an DIN 18196):				
Einteilung	in Bodengruppen			
Symbol	Gruppen			
GE	enggestufte Kiese			
GW	weit gestufte Kies-Sand-Gemische			
SE	enggestufte Sande			
SW	weitgestufte Sand-Kies-Gemische			
SU	Sand-Schluff-Gem. (5-15% < 0,06mm)			
SU*	Sand-Schluff-Gem. (15-40% < 0,06mm)			
ST	Sand-Ton-Gem. (5-15% < 0,06mm)			
ST*	Sand-Ton-Gem. (15-40% < 0,06mm)			
UL	leicht plastische Schluffe			
UM	mittelplastische Schluffe			
UA	ausgeprägt plastische Schluffe			
TL	leicht plastische Tone			
TM	mittelplastische Tone			
TA	ausgeprägt plastische Tone			
HN	nicht bis mäßig zersetzte Torfe			
HZ	zersetzte Torfe			
ОН	grob- bis gemischtkörnige Böden mit Beimengungen humoser Art			
ОТ	Tone mit organischen Beimengungen			
OU	Schluffe mit organischen Beimengungen			
OK	Böden mit kalkigen Bildungen			
Α	Auffüllung			

Beispiele für Bodenart, Farbe, Bodengruppe:						
mS, fs, hbn	Mittelsand, feinsandig, hellbraun [SE]					
fS, u', gr	Feinsand, schwach schluffig, grau [SU]					
Mu; fS, ms, h, dbn	Mutterboden; Feinsand, mittelsandig, humos, dunkelbraun [OH]					

Zeichen für bautechnische Eigenschaften (Zustandsform, Beschaffenheit nach Bohrgut):

klüftig fest halbfest - fes

steif - halbfes

weich - st

breiig - weich

Zusätzliche Bezeichnungen:

GOK Geländeoberkante m NHN Höhenbezug

RKB Kleinbohrung (Rammkern-Sondierbohrung)

D_{Pr.} Verdichtungsgrad D Lagerungsdichte

∇ Wasseranschnitt / Grundwasser (zum Zeitpunkt der Erkundung)

Farben:

dbn dunkelbraun bn braun hbn hellbraun gr grau d / h dunkel ... / hell ... oder Farbkombinationen etc.